
Java Development Tooling overview
OTI



Table of Contents
JDT Plug−in Developer Guide...........................................................................................................................1

 JDT Programmer's Guide.................................................................................................................................2
 JDT Core ................................................................................................................................................2

 Notices..............................................................................................................................................3
About This Content..................................................................................................................................3

License...............................................................................................................................................3
Contributions.....................................................................................................................................3

JDT UI.....................................................................................................................................................3
 JDT Debug..............................................................................................................................................4

Reference.............................................................................................................................................................6

JDT Extension Points.........................................................................................................................................8

Classpath Variable Initializers..........................................................................................................................9

Classpath Container Initializers......................................................................................................................11

Code Formatters...............................................................................................................................................13

VM  Install Type UI Page..................................................................................................................................15

JUnit  Launch Configurations..........................................................................................................................17

Test Run Listeners............................................................................................................................................19

Java Runtime Classpath Providers.................................................................................................................21

Java Runtime Classpath Entries.....................................................................................................................23

Java Runtime Classpath Entry  Resolvers......................................................................................................25

Java VM Connectors........................................................................................................................................27

Java VM Install Types......................................................................................................................................29

Classpath Container Entry  Page.....................................................................................................................31

Java Folding Structure Provider.....................................................................................................................33

Javadoc Completion Processor........................................................................................................................35

Java Editor  Text Hovers..................................................................................................................................37

Java Element Filter  Extensions.......................................................................................................................39

Java Development Tooling overview

i



Table of Contents
Java Query Participants...................................................................................................................................42

Quick Assist Processor.....................................................................................................................................44

Quick Fix Processor..........................................................................................................................................51

Create Participants...........................................................................................................................................58

Delete Participants............................................................................................................................................65

Move Participants.............................................................................................................................................72

Rename Participants.........................................................................................................................................79

Refactoring Change Preview Viewers.............................................................................................................86

Refactoring Status Context Viewers...............................................................................................................93

 Other Reference Information .......................................................................................................................100

 Java Development Tools Map of JDT Plug−ins..........................................................................................101

Examples..........................................................................................................................................................102

Installing the examples...................................................................................................................................103
 Java Example Projects........................................................................................................................103

 Introduction..................................................................................................................................103
 Loading the Samples....................................................................................................................103
 Notices..........................................................................................................................................103

 JDT Questions Index.....................................................................................................................................104
 JDT Core.............................................................................................................................................104
 JDT UI................................................................................................................................................104
 Running a Java program.....................................................................................................................104

 Launching a compiled Java program............................................................................................104
 Compiling Java code...........................................................................................................................105

 Compiling code............................................................................................................................105
Using the ant javac adapter...........................................................................................................106
 Problem determination.................................................................................................................106

 Setting the Java build path..................................................................................................................107
 Changing the build path...............................................................................................................108
 Classpath entries...........................................................................................................................108
 Exclusion patterns........................................................................................................................110
 Inclusion patterns.........................................................................................................................111

 Classpath resolution............................................................................................................................111
 Manipulating Java code......................................................................................................................111

 Code modification using Java elements.......................................................................................112
Code modification using the DOM/AST API...............................................................................113

Java Development Tooling overview

ii



Table of Contents
 JDT Questions Index

 Responding to changes in Java elements.....................................................................................117
 Using the Java search engine..............................................................................................................119

 Preparing for search......................................................................................................................119
 Searching......................................................................................................................................121
 Collecting search results...............................................................................................................121

 JDT Core options................................................................................................................................122
Project specific options.................................................................................................................122
Major change in default JDT Core 3.0 options.............................................................................123
JDT Core options descriptions......................................................................................................123

 Performing code assist on Java code..................................................................................................133
 Code completion...........................................................................................................................133
 Code selection..............................................................................................................................135

 Java model..........................................................................................................................................135
 Java elements................................................................................................................................136
 Java elements and their resources................................................................................................138
 Java projects.................................................................................................................................139
Opening a Java editor....................................................................................................................139
Creating Java specific prompter dialogs.......................................................................................139

Presenting Java elements in a JFace viewer........................................................................................140
Overlaying images with Java information.....................................................................................140
Adding problem and override decorators......................................................................................141
Updating the presentation on model changes................................................................................141
Sorting the viewer.........................................................................................................................141

Writing Jar files....................................................................................................................................142
 Java wizard pages...............................................................................................................................142

 Configuring Java build settings....................................................................................................142
Creating new Java elements..........................................................................................................142
Contributing a classpath container wizard page............................................................................143
 Customizing a wizard page..........................................................................................................143

Java Development Tooling overview

iii



JDT Plug−in Developer Guide
Programmer's Guide• 
Reference• 
Examples Guide• 
Questions Index• 
Legal• 

JDT Plug−in Developer Guide 1



JDT Programmer's Guide
The Eclipse platform is delivered with a full featured Java integrated development environment (IDE). Java
development tooling (JDT) allows users to write, compile, test, debug, and edit programs written in the Java
programming language.

The JDT makes use of many of the platform extension points and frameworks described in the Platform
Plug−in Developer Guide.  It's easiest to think of the JDT as a set of plug−ins that add Java specific behavior
to the generic platform resource model and contribute Java specific views, editors, and actions to the
workbench.

This guide discusses the extension points and API provided by the JDT. We assume that you already
understand the concepts of plug−ins, extension points, workspace resources, and the workbench UI. 

Given that the JDT supplies a full featured Java IDE, why would you need to use the JDT API?  If you are
building a plug−in that interacts with Java programs or resources as part of its function, you may need to do
one or more of the following things:

Programmatically manipulate Java resources, such as creating projects, generating Java source code,
performing builds, or detecting problems in code.

• 

Programmatically launch a Java program from the platform• 
Provide a new type of VM launcher to support a new family of Java runtimes• 
Add new functions and extensions to the Java IDE itself• 

The JDT is structured into three major components:

JDT Core − the headless infrastructure for compiling and manipulating Java code.• 
JDT UI − the user interface extensions that provide the IDE.• 
JDT Debug − program launching and debug support specific to the Java programming language.• 

We'll examine each component's structure and the API it provides.

JDT Core 

JDT Core (org.eclipse.jdt.core) is the plug−in that defines the core Java elements and API. You should
always list this plug−in as a prerequisite when you are developing Java specific features.

JDT Core packages give you access to the Java model objects and headless Java IDE infrastructure.  The JDT
Core packages include:

org.eclipse.jdt.core − defines the classes that describe the Java model.• 
org.eclipse.jdt.core.compiler − defines API for the compiler infrastructure.• 
org.eclipse.jdt.core.dom − supports Abstract Syntax Trees (AST) that can be used for examining the
structure of a compilation unit down to the statement level.

• 

org.eclipse.jdt.core.eval − supports the evaluation of code snippets in a scrapbook or inside the
debugger.

• 

org.eclipse.jdt.core.jdom − supports a Java Document Object Model (DOM) that can be used for
walking the structure of a Java compilation unit.

• 

 JDT Programmer's Guide 2



org.eclipse.jdt.core.search − supports searching the workspace's Java model for Java elements match
a particular description.  

• 

org.eclipse.jdt.core.util − provides utility classes for manipulating .class files and Java model
elements.

• 

Manipulation of the structure of a compilation unit should be done using org.eclipse.jdt.core.dom
instead of org.eclipse.jdt.core.jdom. org.eclipse.jdt.core.jdom will be deprecated in
the 2.2. stream and replaced with org.eclipse.jdt.core.dom.

Notices

The material in this guide is Copyright (c) IBM Corporation and others 2000, 2004.

Terms and conditions regarding the use of this guide.

About This Content

20th June, 2002

License

Eclipse.org makes available all content in this plug−in ("Content"). Unless otherwise indicated below, the
Content is provided to you under the terms and conditions of the Common Public License Version 1.0
("CPL"). A copy of the CPL is available at http://www.eclipse.org/legal/cpl−v10.html. For purposes of the
CPL, "Program" will mean the Content.

Contributions

If this Content is licensed to you under the terms and conditions of the CPL, any Contributions, as defined in
the CPL, uploaded, submitted, or otherwise made available to Eclipse.org, members of Eclipse.org and/or the
host of Eclipse.org web site, by you that relate to such Content are provided under the terms and conditions of
the CPL and can be made available to others under the terms of the CPL.

If this Content is licensed to you under license terms and conditions other than the CPL ("Other License"),
any modifications, enhancements and/or other code and/or documentation ("Modifications") uploaded,
submitted, or otherwise made available to Eclipse.org, members of Eclipse.org and/or the host of Eclipse.org,
by you that relate to such Content are provided under terms and conditions of the Other License and can be
made available to others under the terms of the Other License. In addition, with regard to Modifications for
which you are the copyright holder, you are also providing the Modifications under the terms and conditions
of the CPL and such Modifications can be made available to others under the terms of the CPL.

JDT UI

JDT UI (org.eclipse.jdt.ui) is the plug−in implementing the Java specific user interface classes that
manipulate Java elements. The packages in the JDT UI implement the Java−specific extensions to the
workbench.    The JDT UI packages include:

Java Development Tooling overview

 Notices 3

http://www.eclipse.org/legal/cpl-v10.html


org.eclipse.jdt.ui − provides support classes for presenting Java elements in the user interface.  This
package exposes constants for retrieving Java user interface parts from the workbench registry and for
retrieving preference settings from the Java preferences.  Programming interfaces
ITypeHierarchyViewPart and IPackagesViewPart are provided for interacting with Java views.

• 

org.eclipse.jdt.ui.actions − provides actions and action groups to populate tool bars, global menu
bars and context menus with JDT specific functionality. You should use action groups to populate
menus and tool bars instead of adding actions directly. This shields you from missing newly added
actions or from using outdated menu structures.

• 

org.eclipse.jdt.ui.jarpackager − provides classes and interfaces to generate a JAR file.• 
org.eclipse.jdt.ui.refactoring − provides support for running rename refactorings• 
org.eclipse.jdt.ui.text − provides support classes for presenting Java text. • 
org.eclipse.jdt.ui.text.java − provides interfaces to implement code completion processors.• 
org.eclipse.jdt.ui.text.java.hover − provides implementations for presenting text hovers in Java
editors. 

• 

org.eclipse.jdt.ui.wizards − provides wizard pages for creating and configuring Java elements.• 

JDT Debug

JDT Debug is comprised of several plug−ins that support the running and debugging of Java code.

org.eclipse.jdt.launching is the plug−in that defines the Java launching and runtime support. You
will require this plug−in if you need to launch Java virtual machines programmatically.  The JDT
launching is closely tied to the platform launching facility, which is described in Launching a
program.

The package org.eclipse.jdt.launching provides classes for launching Java runtimes from the
platform.  JavaRuntime implements static methods to access registered VMs and compute runtime
classpaths and source lookup paths.  A family of VM's (such as the JDK) is represented by the
IVMInstallType class. IVMInstall represents particular installations within a family.  The
IVMRunner is used to start a particular Java VM and register its processes with the debug plug−in.

The package org.eclipse.jdt.launching.sourcelookup defines classes for locating source code
elements in the file system.

• 

org.eclipse.jdt.debug is the plug−in that defines the Java debug model. You will require this plug−in
if you need to programmatically access objects in a program being debugged.  The JDT debug model
is closely tied to the platform debug model, which is described in Platform debug model.

The package org.eclipse.jdt.debug.core supports a Java debug model based on JDI/JDWP that can
be used for controlling a Java program under debug.

The package org.eclipse.jdt.debug.eval provides infrastructure for evaluating Java expressions and
reporting results.

• 

org.eclipse.jdt.debug.ui is the plug−in that defines the Java debug UI extensions. Most of the
debugger API is provided by the platform debugger infrastructure described in Debug model
presentation and Debug UI utility classes.  The Java debug UI API focuses on accessing the
prompting source locator and Java launch configuration tabs.  

The package org.eclipse.jdt.debug.ui.launchConfigurations defines the launch configuration tabs

• 

Java Development Tooling overview

 JDT Debug 4



for local and remote Java applications.

The package org.eclipse.jdt.debug.ui implements a simple UI for locating source code by prompting
the user.

Java Development Tooling overview

 JDT Debug 5



Reference
API Reference

org.eclipse.jdt.core♦ 
org.eclipse.jdt.core.compiler♦ 
org.eclipse.jdt.core.dom♦ 
org.eclipse.jdt.core.dom.rewrite♦ 
org.eclipse.jdt.core.eval♦ 
org.eclipse.jdt.core.formatter♦ 
org.eclipse.jdt.core.jdom♦ 
org.eclipse.jdt.core.util♦ 
org.eclipse.jdt.core.search♦ 
org.eclipse.jdt.debug.core♦ 
org.eclipse.jdt.debug.eval♦ 
org.eclipse.jdt.debug.ui♦ 
org.eclipse.jdt.debug.ui.launchConfigurations♦ 
org.eclipse.jdt.launching♦ 
org.eclipse.jdt.launching.sourcelookup♦ 
org.eclipse.jdt.launching.sourcelookup.containers♦ 
org.eclipse.jdt.ui♦ 
org.eclipse.jdt.ui.actions♦ 
org.eclipse.jdt.ui.jarpackager♦ 
org.eclipse.jdt.ui.refactoring♦ 
org.eclipse.jdt.ui.text♦ 
org.eclipse.jdt.ui.text.folding♦ 
org.eclipse.jdt.ui.text.java♦ 
org.eclipse.jdt.ui.text.java.hover♦ 
org.eclipse.jdt.ui.wizards♦ 
org.eclipse.jdt.junit♦ 
org.eclipse.ltk.core.refactoring♦ 
org.eclipse.ltk.core.refactoring.participants♦ 
org.eclipse.ltk.ui.refactoring♦ 

• 

Extension Points Reference
org.eclipse.jdt.core.classpathVariableInitializer♦ 
org.eclipse.jdt.core.classpathContainerInitializer♦ 
org.eclipse.jdt.core.codeFormatter♦ 
org.eclipse.jdt.debug.ui.vmInstallTypePage♦ 
org.eclipse.jdt.junit.junitLaunchConfigs♦ 
org.eclipse.jdt.junit.testRunListeners♦ 
org.eclipse.jdt.launching.classpathProviders♦ 
org.eclipse.jdt.launching.runtimeClasspathEntries♦ 
org.eclipse.jdt.launching.runtimeClasspathEntryResolvers♦ 
org.eclipse.jdt.launching.vmConnectors♦ 
org.eclipse.jdt.launching.vmInstallTypes♦ 
org.eclipse.jdt.ui.classpathContainerPage♦ 
org.eclipse.jdt.ui.foldingStructureProviders♦ 
org.eclipse.jdt.ui.javadocCompletionProcessor♦ 
org.eclipse.jdt.ui.javaEditorTextHovers♦ 
org.eclipse.jdt.ui.javaElementFilters♦ 
org.eclipse.jdt.ui.queryParticipants♦ 

• 

Reference 6



org.eclipse.jdt.ui.quickAssistProcessors♦ 
org.eclipse.jdt.ui.quickFixProcessors♦ 
org.eclipse.ltk.core.refactoring.createParticipants♦ 
org.eclipse.ltk.core.refactoring.deleteParticipants♦ 
org.eclipse.ltk.core.refactoring.moveParticipants♦ 
org.eclipse.ltk.core.refactoring.renameParticipants♦ 
org.eclipse.ltk.ui.refactoring.changePreviewViewers♦ 
org.eclipse.ltk.ui.refactoring.statusContextViewers♦ 

Other Reference Information
JDT Plug−ins Map♦ 

• 

Java Development Tooling overview

Reference 7



JDT Extension Points
The following extension points can be used to extend the capabilities of the JDT infrastructure:

org.eclipse.jdt.core.classpathVariableInitializer• 
org.eclipse.jdt.core.classpathContainerInitializer• 
org.eclipse.jdt.core.codeFormatter• 
org.eclipse.jdt.debug.ui.vmInstallTypePage• 
org.eclipse.jdt.junit.junitLaunchConfigs• 
org.eclipse.jdt.junit.testRunListeners• 
org.eclipse.jdt.launching.classpathProviders• 
org.eclipse.jdt.launching.runtimeClasspathEntries• 
org.eclipse.jdt.launching.runtimeClasspathEntryResolvers• 
org.eclipse.jdt.launching.vmConnectors• 
org.eclipse.jdt.launching.vmInstallTypes• 
org.eclipse.jdt.ui.classpathContainerPage• 
org.eclipse.jdt.ui.foldingStructureProviders• 
org.eclipse.jdt.ui.javadocCompletionProcessor• 
org.eclipse.jdt.ui.javaEditorTextHovers• 
org.eclipse.jdt.ui.javaElementFilters• 
org.eclipse.jdt.ui.queryParticipants• 
org.eclipse.jdt.ui.quickAssistProcessors• 
org.eclipse.jdt.ui.quickFixProcessors• 
org.eclipse.ltk.core.refactoring.createParticipants• 
org.eclipse.ltk.core.refactoring.deleteParticipants• 
org.eclipse.ltk.core.refactoring.moveParticipants• 
org.eclipse.ltk.core.refactoring.renameParticipants• 
org.eclipse.ltk.ui.refactoring.changePreviewViewers• 
org.eclipse.ltk.ui.refactoring.statusContextViewers• 

JDT Extension Points 8



Classpath Variable Initializers
Identifier:

org.eclipse.jdt.core.classpathVariableInitializer

Since:

2.0

Description:

This extension point allows clients to contribute custom classpath variable initializers, which are used to lazily
bind classpath variables.

Configuration Markup:

<!ELEMENT extension (classpathVariableInitializer*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT classpathVariableInitializer EMPTY>

<!ATTLIST classpathVariableInitializer

variable CDATA #REQUIRED

class    CDATA #REQUIRED>

variable − a unique name identifying the variable for which this initializer will be activated.• 
class − the class that implements this variable initializer. This class must implement a public subclass
of org.eclipse.jdt.core.ClasspathVariableInitializer with a public
0−argument constructor.

• 

Classpath Variable Initializers 9



Examples:

Example of a declaration of a ClasspathVariableInitializer for a classpath variable named
"FOO":

<extension point=

"org.eclipse.jdt.core.classpathVariableInitializer"

>

<classpathVariableInitializer variable=

"FOO"

class=

"com.example.CPVInitializer"

/>

</extension>

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Classpath Variable Initializers 10

http://www.eclipse.org/legal/cpl-v10.html


Classpath Container Initializers
Identifier:

org.eclipse.jdt.core.classpathContainerInitializer

Since:

2.0

Description:

This extension point allows clients to contribute custom classpath container initializers, which are used to
lazily bind classpath containers to instances of org.eclipse.jdt.core.IClasspathContainer.

Configuration Markup:

<!ELEMENT extension (classpathContainerInitializer*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT classpathContainerInitializer EMPTY>

<!ATTLIST classpathContainerInitializer

id    CDATA #REQUIRED

class CDATA #REQUIRED>

id − a unique name identifying all containers for which this initializer will be activated.• 
class − the class that implements this container initializer. This class must implement a public
subclass of org.eclipse.jdt.core.ClasspathContainerInitializer with a public
0−argument constructor.

• 

Classpath Container Initializers 11



Examples:

Example of a declaration of a ClasspathContainerInitializer for a classpath container named
"JDK":

<extension point=

"org.eclipse.jdt.core.classpathContainerInitializer"

>

<classpathContainerInitializer id=

"JDK"

class=

"com.example.MyInitializer"

/>

</extension>

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Classpath Container Initializers 12

http://www.eclipse.org/legal/cpl-v10.html


Code Formatters
Identifier:

org.eclipse.jdt.core.codeFormatter

Since:

2.0

Description:

This extension point allows clients to contribute new source code formatter implementations.

Configuration Markup:

<!ELEMENT extension (codeFormatter*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT codeFormatter EMPTY>

<!ATTLIST codeFormatter

class CDATA #REQUIRED>

class − the class that defines the code formatter implementation. This class must be a public
implementation of org.eclipse.jdt.core.ICodeFormatter with a public 0−argument
constructor.

• 

Examples:

Example of an implementation of ICodeFormatter:

<extension point=

Code Formatters 13



"org.eclipse.jdt.core.codeFormatter"

>

<codeFormatter class=

"com.example.MyCodeFormatter"

/>

</extension>

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Code Formatters 14

http://www.eclipse.org/legal/cpl-v10.html


VM Install Type UI Page
Identifier:

org.eclipse.jdt.debug.ui.vmInstallTypePage

Description:

This extension point provides a mechanism for contributing UI that will appear in the JRE tab of the launch
configuration dialog. The UI is shown only when a VM of the specified install type is selected in the JRE tab.

Configuration Markup:

<!ELEMENT extension (vmInstallTypePage*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT vmInstallTypePage EMPTY>

<!ATTLIST vmInstallTypePage

id              CDATA #REQUIRED

vmInstallTypeID CDATA #REQUIRED

class           CDATA #REQUIRED>

id − specifies a unique identifier for this vm install type UI page.• 
vmInstallTypeID − specifies VM install type that this UI page is applicable to (corresponds to the id
of a VM install type).

• 

class − specifies a fully qualified name of a Java class that implements
ILaunchConfigurationTab.

• 

Examples:

The following is an example of a VM install type page extension point:

VM Install Type UI Page 15



<extension point=

"org.eclipse.jdt.debug.ui.vmInstallTypePage"

>

<vmInstallTypePage id=

"com.example.ExampleVMInstallTypePage"

vmInstallTypeID=

"com.example.ExampleVMInstallTypeIdentifier"

class=

"com.example.ExampleVMInstallTypePage"

>

</vmInstallTypePage>

</extension>

In the above example, the contributed page will be shown in the JRE tab of the launch configuration dialog
whenever the currently selected JRE has a VM Install type identifier of
com.example.ExampleVMInstallTypeIdentifier.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.ui.ILaunchConfigurationTab.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

VM Install Type UI Page 16

http://www.eclipse.org/legal/cpl-v10.html


JUnit Launch Configurations
Identifier:

org.eclipse.jdt.junit.junitLaunchConfigs

Since:

3.0

Description:

Extension point to register JUnit based launch configurations that need to be updated during refactorings.

Configuration Markup:

<!ELEMENT extension (launchConfigType)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

<!ELEMENT launchConfigType EMPTY>

<!ATTLIST launchConfigType

configTypeID CDATA #REQUIRED>

configTypeID −• 

Examples:

The following is an example of a JUnit launch config contribution:

<extension point=

"org.eclipse.jdt.junit.junitLaunchConfigs"

>

<launchConfigType configTypeID=

JUnit Launch Configurations 17



"com.example.JunitLaunchConfig"

>

</extension>

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

JUnit Launch Configurations 18

http://www.eclipse.org/legal/cpl-v10.html


Test Run Listeners
Identifier:

org.eclipse.jdt.junit.testRunListeners

Since:

2.1

Description:

Extension point to register additional test run listeners. A test run listeners is notified about the execution of a
test run.

Configuration Markup:

<!ELEMENT extension (testRunListener)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

a fully qualified identifier of the target extension point

id − a fully qualified identifier of the target extension point• 

<!ELEMENT testRunListener EMPTY>

<!ATTLIST testRunListener

class CDATA #REQUIRED>

class − Test run class implementing org.eclipse.jdt.junit.ITestRunListener• 

Examples:

The following is an example of a test run listener contribution:

Test Run Listeners 19



<extension point=

"org.eclipse.jdt.junit.testRunListeners"

>

<testRunListener class=

"com.example.SampleTestRunListener"

/>

</extension>

API Information:

Test run listeners must must implement the org.eclipse.jdt.junit.ITestRunListener interface.

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Test Run Listeners 20

http://www.eclipse.org/legal/cpl-v10.html


Java Runtime Classpath Providers
Identifier:

org.eclipse.jdt.launching.classpathProviders

Since:

2.1

Description:

This extension point allows clients to dynamically compute and resolve classpaths and source lookup paths
for Java launch configurations. A Java launch configuration is can be associated with a custom classpath
provider via the launch configuration attriubte ATTR_CLASSPATH_PROVIDER and a custom source path
provider via the attribute ATTR_SOURCE_PATH_PROVIDER. When specified, the launch configuration
attribues correspond to the id of a classpath provider extension.

Configuration Markup:

<!ELEMENT extension (classpathProvider*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT classpathProvider EMPTY>

<!ATTLIST classpathProvider

id    CDATA #REQUIRED

class CDATA #REQUIRED>

id − a unique identifier that can be used to reference this classpath provider• 
class − the class that implements this classpath provider. The class must implement
IRuntimeClasspathProvider

• 

Java Runtime Classpath Providers 21



Examples:

The following is an example of a classpath provider:

<extension point=

"org.eclipse.jdt.launching.classpathProviders"

>

<classpathProvider class=

"com.example.ProviderImplementation"

id=

"com.example.ProviderId"

>

</classpathProvider>

</extension>

Supplied Implementation:

A default implementation is provided for all launch configurations that do not specify a custom classpath
provider.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Java Runtime Classpath Providers 22

http://www.eclipse.org/legal/cpl-v10.html


Java Runtime Classpath Entries
Identifier:

org.eclipse.jdt.launching.runtimeClasspathEntries

Since:

3.0

Description:

This in an internal extension point that allows the Java debugger to extend the set of runtime classpath entries
used for launching Java applications. Clients are not intended to use this extension point.

Configuration Markup:

<!ELEMENT extension (runtimeClasspathEntry*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT runtimeClasspathEntry EMPTY>

<!ATTLIST runtimeClasspathEntry

id    CDATA #REQUIRED

class CDATA #REQUIRED>

id − a unique identifier that can be used to reference this type of runtime classpath entry.• 
class − the class that implements this runtime classpath entry. The class must implement
IRuntimeClasspathEntry2.

• 

Examples:

The following is an example of a resolver:

Java Runtime Classpath Entries 23



<extension point=

"org.eclipse.jdt.launching.runtimeClasspathEntries"

>

<runtimeClasspathEntry id=

"com.example.EnvVarEntry"

class=

"com.example.EnvVarClasspathEntry"

>

</runtimeClasspathEntry>

</extension>

Supplied Implementation:

An implementations is provided for Java projects, contributed with an identifier of
org.eclipse.jdt.launching.classpathentry.project. A Java project classpath entry
includes all references on its buildpath.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Java Runtime Classpath Entries 24

http://www.eclipse.org/legal/cpl-v10.html


Java Runtime Classpath Entry Resolvers
Identifier:

org.eclipse.jdt.launching.runtimeClasspathEntryResolvers

Description:

This extension point allows clients to dynamically resolve entries used on the runtime classpath and source
lookup path, for corresponding classpath variables and classpath containers.

Configuration Markup:

<!ELEMENT extension (runtimeClasspathEntryResolver*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT runtimeClasspathEntryResolver EMPTY>

<!ATTLIST runtimeClasspathEntryResolver

id                      CDATA #REQUIRED

class                   CDATA #REQUIRED

variable                CDATA #IMPLIED

container               CDATA #IMPLIED

runtimeClasspathEntryId CDATA #IMPLIED>

id − a unique identifier that can be used to reference this resolver.• 
class − the class that implements this resolver. The class must implement
IRuntimeClasspathEntryResolver.

• 

variable − the name of the classpath variable this resolver is registered for. At least one of variable or
container must be specified, and at most one resolver can be registered for a variable or container.

• 

container − the identifier of the classpath container this resolver is registered for. At least one of
variable or container must be specified, and at most one resolver can be registered for a variable or
container.

• 

Java Runtime Classpath Entry Resolvers 25



runtimeClasspathEntryId − the identifier of the runtime classpath entry this resolver is associated
with

• 

Examples:

The following is an example of a resolver:

<extension point=

"org.eclipse.jdt.launching.runtimeClasspathEntryResolvers"

>

<runtimeClasspathEntryResolver class=

"com.example.ResolverImplementation"

id=

"com.example.ResolverId"

variable=

"CLASSPATH_VARIABLE"

>

</runtimeClasspathEntryResolver>

</extension>

Supplied Implementation:

Implementations are provided for the standard JRE_LIB classpath variable and JRE_CONTAINER classpath
container.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Java Runtime Classpath Entry Resolvers 26

http://www.eclipse.org/legal/cpl-v10.html


Java VM Connectors
Identifier:

org.eclipse.jdt.launching.vmConnectors

Description:

This extension point represents different kinds of connections to remote VMs. Each extension must
implement org.eclipse.jdt.launching.IVMConnector. An IVMConnector is responsible for
establishing a connection with a remote VM.

Configuration Markup:

<!ELEMENT extension (vmConnector*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT vmConnector EMPTY>

<!ATTLIST vmConnector

id    CDATA #REQUIRED

class CDATA #REQUIRED>

id − a unique identifier that can be used to reference this IVMConnector.• 
class − the class that implements this connector. The class must implement IVMConnector.• 

Examples:

The following is an example of an IVMConnector:

<extension point=

Java VM Connectors 27



"org.eclipse.jdt.launching.vmConnectors"

>

<vmConnector class=

"com.example.ConnectorImplementation"

id=

"com.example.ConnectorId"

>

</vmConnector>

</extension>

Supplied Implementation:

An implementation of a standard socket attach connector is provided.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Java VM Connectors 28

http://www.eclipse.org/legal/cpl-v10.html


Java VM Install Types
Identifier:

org.eclipse.jdt.launching.vmInstallTypes

Description:

This extension point represents different kinds of Java runtime environments and development kits. Each
extension must implement org.eclipse.jdt.launching.IVMInstallType. An IVMInstallType is
responsible for creating and managing a set of instances of its corresponding IVMInstall class. Through
creating different IVMInstall objects, an IVMInstallType allows for specific behaviour for various Java VMs.
A UI for managing IVMInstalls is provided by the Java Debug UI plug−in.

Configuration Markup:

<!ELEMENT extension (vmInstallType*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT vmInstallType EMPTY>

<!ATTLIST vmInstallType

id    CDATA #REQUIRED

class CDATA #REQUIRED>

id − a unique identifier that can be used to reference this IVMInstallType.• 
class − the class that implements this VM install type. The class must implement IVMInstallType.• 

Examples:

The following is an example of an IVMInstallType for the J9 VM:

Java VM Install Types 29



<extension point=

"org.eclipse.jdt.launching.vmInstallTypes"

>

<vmInstallType class=

"org.eclipse.jdt.internal.launching.j9.J9VMInstallType"

id=

"org.eclipse.jdt.internal.launching.j9.J9Type"

>

</vmInstallType>

</extension>

Supplied Implementation:

Abstract implementations of IVMInstall and IVMInstallType are provided. The Java Development Tools
Launching Support plug−in defines a VM install type for the standard 1.1.* and 1.2/1.3/1.4 level JRE.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Java VM Install Types 30

http://www.eclipse.org/legal/cpl-v10.html


Classpath Container Entry Page
Identifier:

org.eclipse.jdt.ui.classpathContainerPage

Description:

This extension point allows to add a wizard page to create or edit a classpath container entry.

Configuration Markup:

<!ELEMENT extension (classpathContainerPage*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT classpathContainerPage EMPTY>

<!ATTLIST classpathContainerPage

id    CDATA #REQUIRED

name  CDATA #IMPLIED

class CDATA #IMPLIED>

id − identifies the classpath container as defined by
org.eclipse.jdt.core.classpathVariableInitializer

• 

name − Name of the classpath container used when selecting a new container. This attribute should
be a translated string.

• 

class − the name of the class that implements this container page. The class must be public and
implement org.eclipse.jdt.ui.wizards.IClasspathContainerPage with a public
0−argument constructor.

• 

Classpath Container Entry Page 31



Examples:

The following is an example of a classpath entry container page:

<extension point=

"org.eclipse.jdt.ui.classpathContainerPage"

>

<classpathContainerPage id=

"com.example.myplugin.myContainerId"

name=

"JRE System Libraries"

class=

"com.example.NewJDKEntryPage"

>

</classpathContainerPage>

</extension>

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Classpath Container Entry Page 32

http://www.eclipse.org/legal/cpl-v10.html


Java Folding Structure Provider
Identifier:

org.eclipse.jdt.ui.foldingStructureProviders

Since:

3.0

Description:

Contributions to this extension point define folding structures for the Java editor. That is, they define the
regions of a Java source file that can be folded away. See
org.eclipse.jface.text.source.ProjectionViewer for reference.

Extensions may optionally contribute a preference block which will appear on the Java editor preference page.

Configuration Markup:

<!ELEMENT extension (provider)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

<!ELEMENT provider EMPTY>

<!ATTLIST provider

id               CDATA #REQUIRED

name             CDATA #IMPLIED

class            CDATA #REQUIRED

preferencesClass CDATA #IMPLIED>

id − The unique identifier of this provider.• 
name − The name of this provider. If none is given, the id is used instead.• 
class − An implementation of org.eclipse.jdt.ui.text.folding.IJavaFoldingStructureProvider• 
preferencesClass − An implementation of
org.eclipse.jdt.ui.text.folding.IJavaFoldingPreferenceBlock

• 

Java Folding Structure Provider 33



Examples:

See
org.eclipse.jdt.internal.ui.text.folding.DefaultJavaFoldingStructureProvider
for an example.

Supplied Implementation:

org.eclipse.jdt.internal.ui.text.folding.DefaultJavaFoldingStructureProvider
provides the default folding structure for the Java editor.
org.eclipse.jdt.internal.ui.text.folding.DefaultJavaFoldingPreferenceBlock
provides the preference block for the default structure provider.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Java Folding Structure Provider 34

http://www.eclipse.org/legal/cpl-v10.html


Javadoc Completion Processor
Identifier:

org.eclipse.jdt.ui.javadocCompletionProcessor

Description:

This extension point allows to add a Javadoc completion processor to e.g. offer new Javadoc tags.

Configuration Markup:

<!ELEMENT extension (javadocCompletionProcessor*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT javadocCompletionProcessor EMPTY>

<!ATTLIST javadocCompletionProcessor

id    CDATA #REQUIRED

name  CDATA #IMPLIED

class CDATA #IMPLIED>

id − Unique identifier for the Javadoc completion processor.• 
name − Localized name of the Javadoc completion processor.• 
class − The name of the class that implements this Javadoc completion processor. The class must be
public and implement
org.eclipse.jdt.ui.text.java.IJavadocCompletionProcessor with a public
0−argument constructor.

• 

Examples:

The following is an example of a Javadoc completion processor contribution:

Javadoc Completion Processor 35



<extension point=

"org.eclipse.jdt.ui.javadocCompletionProcessor"

>

<javadocCompletionProcessor id=

"XDocletJavadocProcessor"

name=

"XDoclet Javadoc Processor"

class=

"com.example.XDocletJavadocProcessor"

>

</javadocCompletionProcessor>

</extension>

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Javadoc Completion Processor 36

http://www.eclipse.org/legal/cpl-v10.html


Java Editor Text Hovers
Identifier:

org.eclipse.jdt.ui.javaEditorTextHovers

Description:

This extension point is used to plug−in text hovers in a Java editor.

Configuration Markup:

<!ELEMENT extension (hover*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT hover EMPTY>

<!ATTLIST hover

id          CDATA #REQUIRED

class       CDATA #REQUIRED

label       CDATA #IMPLIED

description CDATA #IMPLIED

activate    (true | false) "false">

id − the id, typically the same as the fully qualified class name.• 
class − the fully qualified class name implementing the interface
org.eclipse.jdt.ui.text.java.hover.IJavaEditorTextHover.

• 

label − the translatable label for this hover.• 
description − the translatable description for this hover.• 
activate − if the attribute is set to "true" it will force this plug−in to be loaded on hover activation.• 

Java Editor Text Hovers 37



Examples:

The following is an example of a hover definition:

<extension point=

"org.eclipse.jdt.ui.javaEditorTextHover"

>

<hover id=

"org.eclipse.example.jdt.internal.debug.ui.JavaDebugHover"

class=

"org.eclipse.example.jdt.internal.debug.ui.JavaDebugHover"

label=

"%javaVariableHover"

/>

</hover>

</extension>

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Java Editor Text Hovers 38

http://www.eclipse.org/legal/cpl-v10.html


Java Element Filter Extensions
Identifier:

org.eclipse.jdt.ui.javaElementFilters

Description:

This extension point is used to extend Java UI views with filters.

Configuration Markup:

<!ELEMENT extension (filter*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT filter EMPTY>

<!ATTLIST filter

id          CDATA #IMPLIED

name        CDATA #IMPLIED

description CDATA #IMPLIED

targetId    CDATA #IMPLIED

enabled     (true | false)

pattern     CDATA #IMPLIED

class       CDATA #IMPLIED>

id − a unique id that will be used to identify this filter.• 
name − a unique name that allows to identify this filter in the UI. This attribute should be a translated
string. Though this attribute is not required for pattern filters (i.e. those using the pattern attribute)
we suggest to provide a name anyway, otherwise the pattern string itself would be used to represent
the filter in the UI.

• 

Java Element Filter Extensions 39



description − a short description for this filter. This attribute should be a translated string.• 
targetId − the id of the target where this filter is contributed. If this attribute is missing, then the filter
will be contributed to all views which use the
org.eclipse.jdt.ui.actions.customFiltersActionGroup. This replaces the
deprecated attributed "viewId".

• 

enabled − the filter will be enabled if this attribute is present and its value is "true". Most likely the
user will be able to override this setting in the UI.

• 

pattern − elements whose name matches this pattern will be hidden. This attribute is here for
backward compatibility and should no longer be used. All views that allow to plug−in a filter also
allow to add pattern filters directly via UI.

• 

class − the name of the class used to filter the view. The class must extend
org.eclipse.jface.viewers.ViewerFilter. If this attribute is here then the pattern
attribute must not provided.

• 

Examples:

The following is an example of Java element filter definition. It filters out inner classes and is initially
selected.

<extension point=

"org.eclipse.jdt.ui.javaElementFilters"

>

<filter id=

"org.eclipse.jdt.ui.PackageExplorer.LibraryFilter"

name=

"%HideReferencedLibraries.label"

description=

"%HideReferencedLibraries.description"

targetId=

"org.eclipse.jdt.ui.PackageExplorer"

class=

"org.eclipse.jdt.internal.ui.filters.LibraryFilter"

enabled=

Java Development Tooling overview

Java Element Filter Extensions 40



"false"

>

</filter>

</extension>

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Java Element Filter Extensions 41

http://www.eclipse.org/legal/cpl-v10.html


Java Query Participants
Identifier:

org.eclipse.jdt.ui.queryParticipants

Since:

3.0

Description:

This extension point allows clients to contribute results to java searches.

Configuration Markup:

<!ELEMENT extension (queryParticipant)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

<!ELEMENT queryParticipant EMPTY>

<!ATTLIST queryParticipant

class  CDATA #REQUIRED

id     CDATA #REQUIRED

nature CDATA #REQUIRED

name   CDATA #REQUIRED>

class − The class that implements this query participant. The class must be public and implement
org.eclipse.jdt.ui.search.IQueryParticipant with a zero−argument constructor.

• 

id − The unique id of this query participant.• 
nature − The project nature id this participant should be active for. If the participant should be active
for multiple project natures, multiple participants must be defined.

• 

name − A user readeable name for the participant.• 

Java Query Participants 42



Examples:

The following is an example of a query participant contribution:

<extension point=

"org.eclipse.jdt.ui.queryParticipants"

>

<queryParticipant label=

"Example Query Participant"

nature=

"org.eclipse.jdt.core.javanature"

class=

"org.eclipse.jdt.ui.example.TestParticipant"

id=

"org.eclipse.jdt.ui.example.TestParticipant"

>

</queryParticipant>

</extension>

API Information:

The contributed class must implement org.eclipse.jdt.ui.search.IQueryParticipant

Supplied Implementation:

none

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Java Query Participants 43

http://www.eclipse.org/legal/cpl-v10.html


Quick Assist Processor
Identifier:

org.eclipse.jdt.ui.quickAssistProcessors

Since:

3.0

Description:

This extension point allows to add a Quick Assist processor to offer new Quick Assists in the Java editor.

Configuration Markup:

<!ELEMENT extension (quickAssistProcessor*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT quickAssistProcessor (enablement)>

<!ATTLIST quickAssistProcessor

id    CDATA #REQUIRED

name  CDATA #IMPLIED

class CDATA #IMPLIED>

id − Unique identifier for the Quick Assist processor• 
name − Localized name of the Quick Assist processor.• 
class − the name of the class that implements this Quick Assist processor. The class must be public
and implement org.eclipse.jdt.ui.text.java.IQuickAssistProcessor with a
public 0−argument constructor.

• 

Quick Assist Processor 44



<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.• 

<!ELEMENT test EMPTY>

<!ATTLIST test

Java Development Tooling overview

Quick Assist Processor 45



property CDATA #REQUIRED

args     CDATA #IMPLIED

value    CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

property − the name of an object's property to test.• 
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦ 
the string "false" is converted into Boolean.FALSE♦ 
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦ 

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦ 

in all other cases the string is treated as a java.lang.String♦ 
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦ 

• 

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value    CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.• 
value − the expected value of the property. The value is interpreted as a string value.• 

Java Development Tooling overview

Quick Assist Processor 46



<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

• 

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

• 

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when

Java Development Tooling overview

Quick Assist Processor 47



evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

• 

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST resolve

variable CDATA #REQUIRED

args     CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

• 

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

type − the type to which the object in focus is to be adapted.• 

Java Development Tooling overview

Quick Assist Processor 48



<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

• 

Examples:

The following is an example of a Quick Assist processor contribution:

<extension point=

"org.eclipse.jdt.ui.quickAssistProcessors"

>

<quickAssistProcessor id=

"AdvancedQuickAssistProcessor"

name=

"Advanced Quick Assist Processor"

class=

"com.example.AdvancedQuickAssistProcessor"

>

</quickAssistProcessor>

</extension>

API Information:

The contributed class must implement
org.eclipse.jdt.ui.text.java.IQuickAssistProcessor

Java Development Tooling overview

Quick Assist Processor 49



Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Quick Assist Processor 50

http://www.eclipse.org/legal/cpl-v10.html


Quick Fix Processor
Identifier:

org.eclipse.jdt.ui.quickFixProcessors

Since:

3.0

Description:

This extension point allows to add a Quick Fix processor to offer new Quick Fixes on Java problems.

Configuration Markup:

<!ELEMENT extension (quickFixProcessor*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT quickFixProcessor (enablement)>

<!ATTLIST quickFixProcessor

id    CDATA #REQUIRED

name  CDATA #IMPLIED

class CDATA #IMPLIED>

id − Unique identifier for the Quick Fix processor• 
name − Localized name of the Quick Fix processor.• 
class − the name of the class that implements this Quick Fix processor. The class must be public and
implement org.eclipse.jdt.ui.text.java.IQuickFixProcessor with a public
0−argument constructor.

• 

Quick Fix Processor 51



<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.• 

<!ELEMENT test EMPTY>

<!ATTLIST test

Java Development Tooling overview

Quick Fix Processor 52



property CDATA #REQUIRED

args     CDATA #IMPLIED

value    CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

property − the name of an object's property to test.• 
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦ 
the string "false" is converted into Boolean.FALSE♦ 
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦ 

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦ 

in all other cases the string is treated as a java.lang.String♦ 
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦ 

• 

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value    CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.• 
value − the expected value of the property. The value is interpreted as a string value.• 

Java Development Tooling overview

Quick Fix Processor 53



<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

• 

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

• 

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when

Java Development Tooling overview

Quick Fix Processor 54



evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

• 

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST resolve

variable CDATA #REQUIRED

args     CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

• 

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

type − the type to which the object in focus is to be adapted.• 

Java Development Tooling overview

Quick Fix Processor 55



<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

• 

Examples:

The following is an example of a Quick Fix processor contribution:

<extension point=

"org.eclipse.jdt.ui.quickFixProcessors"

>

<quickFixProcessor id=

"AdvancedQuickFixProcessor"

name=

"Advanced Quick Fix Processor"

class=

"com.example.AdvancedQuickFixProcessor"

>

</quickFixProcessor>

</extension>

API Information:

The contributed class must implement org.eclipse.jdt.ui.text.java.IQuickFixProcessor

Java Development Tooling overview

Quick Fix Processor 56



Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Quick Fix Processor 57

http://www.eclipse.org/legal/cpl-v10.html


Create Participants
Identifier:

org.eclipse.ltk.core.refactoring.createParticipants

Since:

3.0

Description:

This extension point is used to define refactoring create participants. The reader of the expression provides the
following predefined variables which can be referenced via the <with variable="..."> expression element:

Object element: the element to be create or a corresponding descriptor• 
List<String> affectedNatures: a list containing the natures of the projects affected by the refactoring• 
String processorId: the id of the refactoring processor that will own the participant.• 

The default variable used during expression evaluation is bound to the element variable.

Configuration Markup:

<!ELEMENT extension (createParticipant*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT createParticipant (enablement)>

<!ATTLIST createParticipant

id    CDATA #REQUIRED

name  CDATA #REQUIRED

class CDATA #REQUIRED>

id − unique identifier for the create participant.• 
name − a human reabable name of the create participant• 

Create Participants 58



class − the name of the class that provides the participant implementation.• 

<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.• 

Java Development Tooling overview

Create Participants 59



<!ELEMENT test EMPTY>

<!ATTLIST test

property CDATA #REQUIRED

args     CDATA #IMPLIED

value    CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

property − the name of an object's property to test.• 
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦ 
the string "false" is converted into Boolean.FALSE♦ 
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦ 

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦ 

in all other cases the string is treated as a java.lang.String♦ 
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦ 

• 

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value    CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.• 

Java Development Tooling overview

Create Participants 60



value − the expected value of the property. The value is interpreted as a string value.• 

<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

• 

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

• 

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

Java Development Tooling overview

Create Participants 61



variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

• 

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST resolve

variable CDATA #REQUIRED

args     CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

• 

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

Java Development Tooling overview

Create Participants 62



type − the type to which the object in focus is to be adapted.• 

<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

• 

Examples:

The example below defines a create participant. The participant is enabled if one of the project affected by the
refactoring has a Java nature and when the element to be created is a folder.

<createParticipant id=

"org.myCompany.createParticipant"

name=

"%CreateParticipant.name"

class=

"org.myCompany.CreateParticipant"

>

<enablement>

<with variable=

"affectedNatures"

>

<iterate operator=

Java Development Tooling overview

Create Participants 63



"or"

>

<equals value=

"org.eclipse.jdt.core.javanature"

/>

</iterate>

</with>

<with variable=

"element"

>

<instanceof value=

"org.eclipse.core.resources.IFolder"

/>

</with>

</enablement>

</createParticipant>

API Information:

The contributed class must extend
org.eclipse.ltk.core.refactoring.participants.CreateParticipant

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Create Participants 64

http://www.eclipse.org/legal/cpl-v10.html


Delete Participants
Identifier:

org.eclipse.ltk.core.refactoring.deleteParticipants

Since:

3.0

Description:

This extension point is used to define refactoring delete participants. The reader of the expression provides the
following predefined variables which can be referenced via the <with variable="..."> expression element:

Object element: the element to be deleted• 
List<String> affectedNatures: a list containing the natures of the projects affected by the refactoring• 
String processorId: the id of the refactoring processor that will own the participant.• 

The default variable used during expression evaluation is bound to the element variable.

Configuration Markup:

<!ELEMENT extension (deleteParticipant*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT deleteParticipant (enablement)>

<!ATTLIST deleteParticipant

id    CDATA #REQUIRED

name  CDATA #REQUIRED

class CDATA #REQUIRED>

id − unique identifier for the delete participant.• 
name − a human reabable name of the delete participant• 

Delete Participants 65



class − the name of the class that provides the participant implementation.• 

<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.• 

Java Development Tooling overview

Delete Participants 66



<!ELEMENT test EMPTY>

<!ATTLIST test

property CDATA #REQUIRED

args     CDATA #IMPLIED

value    CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

property − the name of an object's property to test.• 
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦ 
the string "false" is converted into Boolean.FALSE♦ 
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦ 

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦ 

in all other cases the string is treated as a java.lang.String♦ 
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦ 

• 

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value    CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.• 

Java Development Tooling overview

Delete Participants 67



value − the expected value of the property. The value is interpreted as a string value.• 

<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

• 

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

• 

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

Java Development Tooling overview

Delete Participants 68



variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

• 

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST resolve

variable CDATA #REQUIRED

args     CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

• 

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

Java Development Tooling overview

Delete Participants 69



type − the type to which the object in focus is to be adapted.• 

<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

• 

Examples:

The example below defines a delete participant. The participant is enabled if one of the project affected by the
refactoring has a Java nature and when the element to be deleted is of type ICompilationUnit.

<deleteParticipant id=

"org.myCompany.deleteParticipant"

name=

"%DeleteParticipant.name"

class=

"org.myCompany.Participant"

>

<enablement>

<with variable=

"affectedNatures"

>

<iterate operator=

Java Development Tooling overview

Delete Participants 70



"or"

>

<equals value=

"org.eclipse.jdt.core.javanature"

/>

</iterate>

</with>

<with variable=

"element"

>

<instanceof value=

"org.eclipse.jdt.core.ICompilationUnit"

/>

</with>

</enablement>

</deleteParticipant>

API Information:

The contributed class must extend
org.eclipse.ltk.core.refactoring.participants.DeleteParticipant

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Delete Participants 71

http://www.eclipse.org/legal/cpl-v10.html


Move Participants
Identifier:

org.eclipse.ltk.core.refactoring.moveParticipants

Since:

3.0

Description:

This extension point is used to define refactoring move participants. The reader of the expression provides the
following predefined variables which can be referenced via the <with variable="..."> expression element:

Object element: the element to be moved• 
List<String> affectedNatures: a list containing the natures of the projects affected by the refactoring• 
String processorId: the id of the refactoring processor that will own the participant.• 

The default variable used during expression evaluation is bound to the element variable.

Configuration Markup:

<!ELEMENT extension (moveParticipant*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT moveParticipant (enablement)>

<!ATTLIST moveParticipant

id    CDATA #REQUIRED

name  CDATA #REQUIRED

class CDATA #REQUIRED>

id − unique identifier for the move participant.• 
name − a human reabable name of the move participant• 

Move Participants 72



class − the name of the class that provides the participant implementation.• 

<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.• 

Java Development Tooling overview

Move Participants 73



<!ELEMENT test EMPTY>

<!ATTLIST test

property CDATA #REQUIRED

args     CDATA #IMPLIED

value    CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

property − the name of an object's property to test.• 
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦ 
the string "false" is converted into Boolean.FALSE♦ 
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦ 

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦ 

in all other cases the string is treated as a java.lang.String♦ 
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦ 

• 

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value    CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.• 

Java Development Tooling overview

Move Participants 74



value − the expected value of the property. The value is interpreted as a string value.• 

<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

• 

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

• 

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

Java Development Tooling overview

Move Participants 75



variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

• 

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST resolve

variable CDATA #REQUIRED

args     CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

• 

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

Java Development Tooling overview

Move Participants 76



type − the type to which the object in focus is to be adapted.• 

<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

• 

Examples:

The example below defines a type move participant. The participant is enabled if one of the project affected
by the refactoring has a Java nature and when the type to be moved is a JUnit test.

<moveParticipant id=

"org.eclipse.jdt.junit.moveTypeParticipant"

name=

"%MoveTypeParticipant.name"

class=

"org.eclipse.jdt.internal.junit.ui.TypeMoveParticipant"

>

<enablement>

<with variable=

"affectedNatures"

>

<iterate operator=

Java Development Tooling overview

Move Participants 77



"or"

>

<equals value=

"org.eclipse.jdt.core.javanature"

/>

</iterate>

</with>

<with variable=

"element"

>

<instanceof value=

"org.eclipse.jdt.core.IType"

/>

<test property=

"org.eclipse.jdt.junit.isTest"

/>

</with>

</enablement>

</moveParticipant>

API Information:

The contributed class must extend
org.eclipse.ltk.core.refactoring.participants.MoveParticipant

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Move Participants 78

http://www.eclipse.org/legal/cpl-v10.html


Rename Participants
Identifier:

org.eclipse.ltk.core.refactoring.renameParticipants

Since:

3.0

Description:

This extension point is used to define refactoring rename participants. The reader of the expression provides
the following predefined variables which can be referenced via the <with variable="..."> expression element:

Object element: the element to be renamed• 
List<String> affectedNatures: a list containing the natures of the projects affected by the refactoring• 
String processorId: the id of the refactoring processor that will own the participant.• 

The default variable used during expression evaluation is bound to the element variable.

Configuration Markup:

<!ELEMENT extension (renameParticipant*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point• 
id − an optional identifier of the extension instance• 
name − an optional name of the extension instance• 

<!ELEMENT renameParticipant (enablement)>

<!ATTLIST renameParticipant

id    CDATA #REQUIRED

name  CDATA #REQUIRED

class CDATA #REQUIRED>

id − unique identifier for the rename participant.• 
name − a human reabable name of the rename participant• 

Rename Participants 79



class − the name of the class that provides the participant implementation.• 

<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.• 

Java Development Tooling overview

Rename Participants 80



<!ELEMENT test EMPTY>

<!ATTLIST test

property CDATA #REQUIRED

args     CDATA #IMPLIED

value    CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

property − the name of an object's property to test.• 
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦ 
the string "false" is converted into Boolean.FALSE♦ 
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦ 

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦ 

in all other cases the string is treated as a java.lang.String♦ 
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦ 

• 

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value    CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.• 

Java Development Tooling overview

Rename Participants 81



value − the expected value of the property. The value is interpreted as a string value.• 

<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

• 

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

• 

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

Java Development Tooling overview

Rename Participants 82



variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

• 

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST resolve

variable CDATA #REQUIRED

args     CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

• 

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

Java Development Tooling overview

Rename Participants 83



type − the type to which the object in focus is to be adapted.• 

<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

• 

Examples:

The example below defines a rename participant that participates in a type rename. The participant is enabled
if one of the project affected by the refactoring has a Java nature and when the type to be renamed is a JUnit
test.

<renameParticipant id=

"org.eclipse.jdt.junit.renameTypeParticipant"

name=

"%RenameTypeParticipant.name"

class=

"org.eclipse.jdt.internal.junit.ui.TypeRenameParticipant"

>

<enablement>

<with variable=

"affectedNatures"

>

<iterate operator=

Java Development Tooling overview

Rename Participants 84



"or"

>

<equals value=

"org.eclipse.jdt.core.javanature"

/>

</iterate>

</with>

<with variable=

"element"

>

<instanceof value=

"org.eclipse.jdt.core.IType"

/>

<test property=

"org.eclipse.jdt.junit.isTest"

/>

</with>

</enablement>

</renameParticipant>

API Information:

The contributed class must extend
org.eclipse.ltk.core.refactoring.participants.RenameParticipant

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Rename Participants 85

http://www.eclipse.org/legal/cpl-v10.html


Refactoring Change Preview Viewers
Identifier:

org.eclipse.ltk.ui.refactoring.changePreviewViewers

Since:

3.0

Description:

This extension point is used to define a special viewer capable to present change objects. The reader of the
extension point provides the following predefined variables which can be accessed during expression
evaluation using the <with variable="..."/> tag:

change
the change object to present a preview for

The default variable used during expression evaluation is bound to the change variable.

Configuration Markup:

<!ELEMENT extension (changePreviewViewer*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point.• 
id − an optional identifier of the extension instance.• 
name − an optional name of the extension instance.• 

<!ELEMENT changePreviewViewer (enablement)>

<!ATTLIST changePreviewViewer

id    CDATA #REQUIRED

class CDATA #REQUIRED>

id − unique identifier for the change preview viewer.• 
class − the name of the class that provides the implementation.• 

Refactoring Change Preview Viewers 86



<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.• 

<!ELEMENT test EMPTY>

<!ATTLIST test

Java Development Tooling overview

Refactoring Change Preview Viewers 87



property CDATA #REQUIRED

args     CDATA #IMPLIED

value    CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

property − the name of an object's property to test.• 
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦ 
the string "false" is converted into Boolean.FALSE♦ 
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦ 

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦ 

in all other cases the string is treated as a java.lang.String♦ 
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦ 

• 

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value    CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.• 
value − the expected value of the property. The value is interpreted as a string value.• 

Java Development Tooling overview

Refactoring Change Preview Viewers 88



<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

• 

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

• 

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when

Java Development Tooling overview

Refactoring Change Preview Viewers 89



evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

• 

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST resolve

variable CDATA #REQUIRED

args     CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

• 

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

type − the type to which the object in focus is to be adapted.• 

Java Development Tooling overview

Refactoring Change Preview Viewers 90



<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

• 

Examples:

The example below contributes a preview viewer for text change objects.

<extension point=

"org.eclipse.ltk.ui.refactoring.changePreviewViewers"

>

<changePreviewViewer class=

"org.eclipse.ltk.internal.ui.refactoring.TextChangePreviewViewer"

id=

"org.eclipse.ltk.internal.ui.refactoring.textChangePreviewViewer"

>

<enablement>

<instanceof value=

"org.eclipse.ltk.core.refactoring.TextChange"

/>

</enablement>

</changePreviewViewer>

Java Development Tooling overview

Refactoring Change Preview Viewers 91



</extension>

API Information:

The contributed class must extend
org.eclipse.ltk.ui.refactoring.IChangePreviewViewer

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Refactoring Change Preview Viewers 92

http://www.eclipse.org/legal/cpl-v10.html


Refactoring Status Context Viewers
Identifier:

org.eclipse.ltk.ui.refactoring.statusContextViewers

Since:

3.0

Description:

This extension point is used to define a special viewer capable to present the context of a refactoring status
entry to the user. The reader of the extension point provides the following predefined variables which can be
accessed during expression evaluation using the <with variable="..."/> tag:

context
the context object managed by the refactoring status entry that is to be presented in the user interface.

Variables can be accessed using the <with variable="..."/> expression. The default variable used during
expression evaluation is bound to the context variable.

Configuration Markup:

<!ELEMENT extension (statusContextViewer*)>

<!ATTLIST extension

point CDATA #REQUIRED

id    CDATA #IMPLIED

name  CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point.• 
id − an optional identifier of the extension instance.• 
name − an optional name of the extension instance.• 

<!ELEMENT statusContextViewer (enablement)>

<!ATTLIST statusContextViewer

id    CDATA #REQUIRED

class CDATA #REQUIRED>

id − unique identifier for the status context viewer.• 
class − the name of the class that provides the implementation.• 

Refactoring Status Context Viewers 93



<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.• 

<!ELEMENT test EMPTY>

Java Development Tooling overview

Refactoring Status Context Viewers 94



<!ATTLIST test

property CDATA #REQUIRED

args     CDATA #IMPLIED

value    CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

property − the name of an object's property to test.• 
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦ 
the string "false" is converted into Boolean.FALSE♦ 
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦ 

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦ 

in all other cases the string is treated as a java.lang.String♦ 
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦ 

• 

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value    CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.• 
value − the expected value of the property. The value is interpreted as a string value.• 

Java Development Tooling overview

Refactoring Status Context Viewers 95



<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

• 

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

• 

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

variable CDATA #REQUIRED>

Java Development Tooling overview

Refactoring Status Context Viewers 96



This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

• 

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST resolve

variable CDATA #REQUIRED

args     CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

• 

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

• 

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

type − the type to which the object in focus is to be adapted.• 

Java Development Tooling overview

Refactoring Status Context Viewers 97



<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

• 

Examples:

The example below contributes a status context viewer for FileStatusContext objects.

<extension point=

"org.eclipse.ltk.ui.refactoring.statusContextViewers"

>

<statusContextViewer class=

"org.eclipse.ltk.internal.ui.refactoring.FileStatusContextViewer"

id=

"org.eclipse.ltk.internal.ui.refactoring.fileStatusContextViewer"

>

<enablement>

<instanceof value=

"org.eclipse.ltk.core.refactoring.FileStatusContext"

/>

</enablement>

Java Development Tooling overview

Refactoring Status Context Viewers 98



</statusContextViewer>

</extension>

API Information:

The contributed class must extend
org.eclipse.ltk.ui.refactoring.IStatusContextViewer

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Java Development Tooling overview

Refactoring Status Context Viewers 99

http://www.eclipse.org/legal/cpl-v10.html


Other Reference Information
The following specifications, white papers, and design notes describe various aspects of the Java development
tooling.

Map of Eclipse Java Development Tooling Plug−ins• 

 Other Reference Information 100



Java Development Tools
Map of JDT Plug−ins
The Eclipse Java development tooling provides a comprehensive Java development environment.

The Java development tooling itself is divided up into a number of separate plug−ins. The following table
shows which API packages are found in which plug−ins as of Eclipse 3.0. This table is useful for determining
which plug−ins a given plug−in should include as prerequisites.

API Package Required plug−in id

com.sun.jdi[.*]
org.eclipse.jdi[.*]
org.eclipse.jdt.debug[.*]

org.eclipse.jdt.debug

org.eclipse.jdt.debug.ui[.*] org.eclipse.jdt.debug.ui

org.eclipse.jdt.core[.*] org.eclipse.jdt.core

org.eclipse.jdt.launching[.*] org.eclipse.jdt.launching

org.eclipse.jdt.ui[.*] org.eclipse.jdt.ui

org.eclipse.jdt.junit[.*] org.eclipse.jdt.junit

org.eclipse.ltk.core.refactoring[.*] org.eclipse.ltk.core.refactoring

org.eclipse.ltk.ui.refactoring org.eclipse.ltk.ui.refactoring

junit.* org.junit

 Java Development Tools Map of JDT Plug−ins 101



Examples
Installing the Examples• 
Java Example Projects• 

Examples 102



Installing the examples
To install the examples, download the zip file containing the examples. 

The workbench should not be running while the examples are being  installed.  Extract the contents of the zip
file to the root directory  of your Eclipse installation.

For example, if you installed the Eclipse Project SDK on d:\eclipse−sdk then extract the contents of the
examples zip file to d:\eclipse−sdk.

Start the workbench. The example plug−ins should be installed.

Java Example Projects

Introduction

The Java examples provide you with sample code for exploring the Eclipse Java tools.

Loading the Samples

Open the New wizard.1. 
Select Java in the Examples category.2. 
Select the project to be added to your workspace.3. 

The wizard creates a new Java project for you and imports the sample code into this project.

Notices

The material in this guide is Copyright (c) IBM Corporation and others 2000, 2004.

Terms and conditions regarding the use of this guide.

Installing the examples 103



JDT Questions Index

JDT Core

What is available in the JDT Core API Packages?• 
How do I launch a Java program from the platform?• 
How do I programmatically compile a Java program?• 
How do I setup a project's classpath?• 
How do I manipulate Java code?• 
How do I use the Java search engine?• 
What are the JDT Core options?• 
How do I programmatically use CodeAssist and CodeSelect?• 
How are Java projects, folders, and files different from regular resources?• 

JDT UI

What is available in the JDT UI packages?• 
How do I programmatically open a Java editor and display a specific Java element in the editor?• 
How do I programatically open the Open Type dialog?• 
How do I present Java elements in a standard JFace viewer?• 
How do I write a Jar file?• 
How do I create a customized new Java element wizard page?• 

Running a Java program

The JDT Debug component includes facilities for launching a Java program using the VM install that is
currently configured by the user for a Java project.  

Launching a compiled Java program

Java programs that have been compiled in a Java project can be run by getting the appropriate IVMRunner
for the Java project and running the class by name. The following code snippet shows how the class MyClass
inside myJavaProject can be launched.

   IVMInstall vmInstall = JavaRuntime.getVMInstall(myJavaProject);
   if (vmInstall == null)
      vmInstall = JavaRuntime.getDefaultVMInstall();
   if (vmInstall != null) {
      IVMRunner vmRunner = vmInstall.getVMRunner(ILaunchManager.RUN_MODE);
      if (vmRunner != null) {
         String[] classPath = null;
         try {
            classPath = JavaRuntime.computeDefaultRuntimeClassPath(myJavaProject);
         } catch (CoreException e) { }
         if (classPath != null) {
            VMRunnerConfiguration vmConfig = 
               new VMRunnerConfiguration("MyClass", classPath);
            ILaunch launch = new Launch(null, ILaunchManager.RUN_MODE, null);
            vmRunner.run(vmConfig, launch, null);

 JDT Questions Index 104



         }
      }
   }

Another way to launch a Java program is to create a Java application launch configuration, and launch it.
The following snippet shows how the class MyClass inside myJavaProject can be launched using a simple
launch configuration. By default, the resulting running application uses the JRE and classpath associated with
myJavaProject.

   ILaunchManager manager = DebugPlugin.getDefault().getLaunchManager();
   ILaunchConfigurationType type = manager.getLaunchConfigurationType(IJavaLaunchConfigurationConstants.ID_JAVA_APPLICATION);
   ILaunchConfigurationWorkingCopy wc = type.newInstance(null, "SampleConfig");
   wc.setAttribute(IJavaLaunchConfigurationConstants.ATTR_PROJECT_NAME, "myJavaProject");
   wc.setAttribute(IJavaLaunchConfigurationConstants.ATTR_MAIN_TYPE_NAME, "myClass");
   ILaunchConfiguration config = wc.doSave();   
   config.launch(ILaunchManager.RUN_MODE, null);

Compiling Java code

The JDT plug−ins include an incremental and batch Java compiler for building Java .class files from source
code. There is no direct API provided by the compiler. It is installed as a builder on Java projects.
Compilation is triggered using standard platform build mechanisms.

The platform build mechanism is described in detail in Incremental project builders .

Compiling code

You can programmatically compile the Java source files in a project using the build API.

   IProject myProject;
   IProgressMonitor myProgressMonitor;
   myProject.build(IncrementalProjectBuilder.INCREMENTAL_BUILD, myProgressMonitor);

For a Java project, this invokes the Java incremental project builder (along with any other incremental project
builders that have been added to the project's build spec). The generated .class files are written to the
designated output folder. Additional resource files are also copied to the output folder. 

In the case of a full batch build, all the .class files in the output folder may be 'scrubbed' to ensure that no stale
files are found. This is controlled using a JDT Core Builder Option
(CORE_JAVA_BUILD_CLEAN_OUTPUT_FOLDER).  The default for this option is to clean output
folders.  Unless this option is reset, you must ensure that you place all .class files for which you do not have
corresponding source files in a separate class file folder on the classpath instead of the output folder.

The incremental and batch builders can be configured with other options that control which resources are
copied to the output folder.  The following sample shows how to set up a resource filter so that files ending
with '.ignore' and folders named 'META−INF', are not copied to the output folder:

   Hashtable options = JavaCore.getOptions();
   options.put(JavaCore.CORE_JAVA_BUILD_RESOURCE_COPY_FILTER, "*.ignore,META−INF/");
   JavaCore.setOptions(options);

Java Development Tooling overview

 Compiling Java code 105



Filenames are filtered if they match one of the supplied patterns. Entire folders are filtered if their name
matches one of the supplied folder names which end in a path separator.

The incremental and batch builders can also be configured to only generate a single error when the .classpath
file has errors. This option is set by default and eliminates numerous errors.  See JDT Core Builder Options
for a complete list of builder−related options and their defaults.

The compiler can also be configured using JavaCore options.  For example, you can define the severity that
should be used for different kinds of problems that are found during compilation.  See JDT Core Compiler
Options for a complete list of compiler−related options and t heir defaults.

When programmatically configuring options for the builder or compiler, you should determine the scope of
the option.  For example, setting up a resource filter may only apply to a particular project.  The following
example sets up the same resource filter shown earlier, but sets it only the individual project.

   Hashtable options = myProject.getOptions(false);  // get only the options set up in this project
   options.put(JavaCore.CORE_JAVA_BUILD_RESOURCE_COPY_FILTER, "*.ignore,META−INF/");
   myProject.setOptions(options);

Using the ant javac adapter

The Eclipse compiler can be used inside an Ant script using the javac adapter. In order to use the Eclipse
compiler, you simply need to define the build.compiler property in your script. Here is a small example.

<?xml version="1.0" encoding="UTF−8"?>
<project name="compile" default="main" basedir="../.">

<property name="build.compiler" value="org.eclipse.jdt.core.JDTCompilerAdapter"/>

        <property name="root" value="${basedir}/src"/>

        <property name="destdir" value="d:/temp/bin" />

        <target name="main">
                <javac srcdir="${root}" destdir="${destdir}" debug="on" nowarn="on" extdirs="d:/extdirs" source="1.4">
                    <classpath>
                      <pathelement location="${basedir}/../org.eclipse.jdt.core/bin"/>
                    </classpath>
                </javac>                
        </target>
</project>

The syntax used for the javac Ant task can be found in the Ant javac task documentation . The current adapter
supports the Javac Ant task 1.4.1 and 1.5.3 versions.

Problem determination

JDT Core defines a specialized marker (marker type "org.eclipse.jdt.core.problem ") to denote compilation
problems. To programmatically discover problems detected by the compiler, the standard platform marker
protocol should be used. See Resource Markers for an overview of using markers.

The following snippet finds all Java problem markers in a compilation unit.

   public IMarker[] findJavaProblemMarkers(ICompilationUnit cu) 

Java Development Tooling overview

Using the ant javac adapter 106

http://jakarta.apache.org/ant/manual/CoreTasks/javac.html


      throws CoreException {
      IResource javaSourceFile = cu.getUnderlyingResource();
      IMarker[] markers = 
         javaSourceFile.findMarkers(IJavaModelMarker.JAVA_MODEL_PROBLEM_MARKER,
            true, IResource.DEPTH_INFINITE);
   }

Java problem markers are maintained by the Java project builder and are removed automatically as problems
are resolved and the Java source is recompiled.

The problem id value is set by one of the constants in IProblem . The problem's id is reliable, but the message
is localized and therefore can be changed according to the default locale. The constants defined in IProblem
are self−descriptive.

An implementation of IProblemRequestor should be defined to collect the problems discovered during a
Java operation. Working copies can be reconciled with problem detection if a IProblemRequestor has been
supplied for the working copy creation. To achieve this, you can use the reconcile method. Here is an
example:

  ICompilationUnit unit = ..; // get some compilation unit

  // create requestor for accumulating discovered problems
  IProblemRequestor problemRequestor = new IProblemRequestor() {
    public void acceptProblem(IProblem problem) {
      System.out.println(problem.getID() + ": " + problem.getMessage());
    }
    public void beginReporting() {}
    public void endReporting() {}
    public boolean isActive() { return true; } // will detect problems if active
  };

  // use working copy to hold source with error
  ICompilationUnit workingCopy = unit.getWorkingCopy(new WorkingCopyOwner() {}, problemRequestor, null);
  ((IOpenable)workingCopy).getBuffer().setContents("public class X extends Zork {}");

  // trigger reconciliation                     
  workingCopy.reconcile(NO_AST, true, null, null);

You can add an action on the reported problems in the acceptProblem(IProblem) method. In this example, the
reported problem will be that Zork cannot be resolved or is not a valid superclass and its id is
IProblem.SuperclassNotFound .

Setting the Java build path

This section describes how to set the Java build path.  The build path is the classpath that is used for building
a Java project (IJavaProject). 

A classpath is simply an array of classpath entries (IClassPathEntry) that describe the types that are
available.  The types can appear in source or binary form and the ordering of the entries on the path defines
the lookup order for resolving types during a build.

The Java build path is reflected in the structure of a Java project element.  You can query a project for its
package fragment roots (IPackageFragmentRoot).  Each classpath entry maps to one or more package

Java Development Tooling overview

 Setting the Java build path 107



fragment roots, each of which further contains a set of package fragments. 

This discussion of the build path does not involve the Java runtime path, which can be defined separately from
the build path.  (See Running Java code for a discussion of the runtime classpath.

Changing the build path

You can programmatically change a project's build path using setRawClasspath on the corresponding
project's Java element.  The following code sets the classpath for a project resource:

        IProject project = ... // get some project resource
        IJavaProject javaProject = JavaCore.create(project);
        IClasspathEntry[] newClasspath = ...;
        javaProject.setRawClasspath(newClasspath, someProgressMonitor);

(Note:  The use of the term "raw" classpath is used to emphasize the fact that any variables used to describe
entry locations have not been resolved.)

The Java build path is persisted into a file named '.classpath' in the project's file structure.  The purpose of this
file is to provide a way to share Java build path settings with others through some source code repository. In
particular, this file should not be manually edited, since it may get corrupted.

Classpath entries

Classpath entries can be defined using factory methods defined on JavaCore.  Classpath entries can reference
any of the following:

a source folder − a folder containing source compilation units organized under their corresponding
package directory structure. Source folders are used to better structure source files in large projects,
and may only be referenced within the containing project. The corresponding factory method is
newSourceEntry. Inside a given source folder, each compilation unit is expected to be nested in the
appropriate folder structure according to its package statement.  For example, compilation unit
'X.java' in package 'p1' must be located inside sub−folder 'p1' of a source folder. It is possible to use
multiple source folders, as long as they don't overlap. A source folder may be assigned its own output
location which determines where generated class files should be placed.  If none is specified, then
class files will be placed in the containing project's output location (see
IJavaProject.setOutputLocation).

The following is an example classpath entry that denotes the source folder 'src' of project 'MyProject':

   IClassPathEntry srcEntry = JavaCore.newSourceEntry(new Path("/MyProject/src"));

• 

a binary library − either a class file folder (contained inside the workspace) or a class file archive
file (contained inside or outside the workspace). Archive libraries can have attached source archives,
which are extracted when asking a class file element for its source (getSource). The factory method
for libraries is newLibraryEntry.

The following is an example classpath entry that denotes the class file folder 'lib' of 'MyProject':

  IClassPathEntry libEntry = JavaCore.newLibraryEntry(
    new Path("/MyProject/lib"), 
    null, //no source

• 

Java Development Tooling overview

 Changing the build path 108



    null, //no source
    false); //not exported

The following classpath entry has a source attachment:

  IClassPathEntry libEntry = JavaCore.newLibraryEntry(
    new Path("d:/lib/foo.jar"), // library location
    new Path("d:/lib/foo_src.zip"), //source archive location
    new Path("src"), //source archive root path
    true); //exported

The source archive root path describes the location of the root within the source archive.  If set to null,
the root of the archive will be inferred dynamically.

a prerequisite project − another Java project.  A prerequisite project always contributes its source
folders to dependent projects. It can also optionally contribute any of its classpath entries which are
tagged as exported (see factory methods supporting the extra boolean argument 'isExported'). This
means that in addition to contributing its source to its dependents, a project will also export all
classpath entries tagged as such.  This allows prerequisite projects to better hide their own structure
changes.  For example, a given project may choose to switch from using a source folder to exporting a
library.  This can be done without requiring its dependent projects to change their classpath. The
factory method for a project prerequisite is newProjectEntry.

The following classpath entry denotes a prerequisite project 'MyFramework'.

  IClassPathEntry prjEntry = JavaCore.newProjectEntry(new Path("/MyFramework"), true); //exported

• 

an indirect reference to a project or library, using some classpath variable − The location of
projects or libraries can be dynamically resolved relative to a classpath variable, which is specified as
the first segment of the entry path. The rest of the entry path is then appended to the resolved variable
path. The factory method for a classpath variable is newVariableEntry. Classpath variables are
global to the workspace, and can be manipulated through JavaCore methods getClasspathVariable
and setClasspathVariable. 

It is possible to register an automatic classpath variable initializer which is invoked through the
extension point org.eclipse.jdt.core.classpathVariableInitializer when the workspace is started.

The following classpath entry denotes a library whose location is kept in the variable 'HOME'.  The
source attachment is defined using the variables  'SRC_HOME' and 'SRC_ROOT' :

  IClassPathEntry varEntry = JavaCore.newVariableEntry(
    new Path("HOME/foo.jar"), // library location
    new Path("SRC_HOME/foo_src.zip"), //source archive location
    new Path("SRC_ROOT"), //source archive root path
    true); //exported   
  JavaCore.setClasspathVariable("HOME", new Path("d:/myInstall"), null); // no progress

• 

entry denoting a classpath container − an indirect reference to a structured set of project or
libraries. Classpath containers are used to refer to a set of classpath entries that describe a complex
library structure.  Like classpath variables, classpath containers (IClasspathContainer) are
dynamically resolved.  Classpath containers may be used by different projects, causing their path

• 

Java Development Tooling overview

 Changing the build path 109



entries to resolve to distinct values per project.  They also provide meta information about the library
that they represent (name, kind, description of library.)  Classpath containers can be manipulated
through JavaCore methods getClasspathContainer and setClasspathContainer. 

It is possible to register an automatic classpath container initializer which is lazily invoked through
the extension point org.eclipse.jdt.core.classpathContainerInitializer when the container needs to
be bound.

The following classpath entry denotes a system class library container:

  IClassPathEntry varEntry = JavaCore.newContainerEntry(
    new Path("JDKLIB/default"), // container 'JDKLIB' + hint 'default'
    false); //not exported      

  JavaCore.setClasspathContainer(
    new Path("JDKLIB/default"), 
    new IJavaProject[]{ myProject }, // value for 'myProject'
    new IClasspathContainer[] {
      new IClasspathContainer() {
        public IClasspathEntry[] getClasspathEntries() {
          return new IClasspathEntry[]{ 
            JavaCore.newLibraryEntry(new Path("d:/rt.jar"), null, null, false);
          }; 
        }
        public String getDescription() { return "Basic JDK library container"; }
        public int getKind() { return IClasspathContainer.K_SYSTEM; }
        public IPath getPath() { return new Path("JDKLIB/basic"); }
      }                 
    }, 
    null);                                   

Exclusion patterns

A classpath source entry may be assigned an exclusion pattern, which prevents certain resources in a source
folder from being visible on the classpath.  Using a pattern allows specified portions of the resource tree to be
filtered out.  Each exclusion pattern path is relative to the classpath entry and uses a pattern mechanism
similar to Ant.  Exclusion patterns can be used to specify nested source folders as long as the outer pattern
excludes the inner pattern.

See getExclusionPatterns() for more detail on exclusion patterns.

The Java project API isOnClasspath checks both inclusion and exclusion patterns before determining
whether a particular resource is on the classpath.

Remarks:

Exclusion patterns have higher precedence than inclusion patterns; in other words, exclusion patterns
can remove files for the ones that are to be included, not the other way around.

• 

A nested source folder excluded from build path can be set as an output location. The following is an
example classpath entry that denotes the source folder 'src' of project 'MyProject' with an excluded
nested source folder used as an output location:

  IPath sourceFolder = new Path("/MyProject/src");
  IPath outputLocation = sourceFolder.append("bin");
  IClassPathEntry srcEntry = JavaCore.newSourceEntry(

• 

Java Development Tooling overview

 Exclusion patterns 110



    sourceFolder, // source folder location
    new Path[] { outputLocation }, // excluded nested folder
    outputLocation); // output location

Inclusion patterns

A classpath source entry may also be assigned an inclusion pattern, which explicitely defines resources to be
visible on the classpath.  When no inclusion patterns are specified, the source entry includes all relevent files
in the resource tree rooted at this source entry's path. Specifying one or more inclusion patterns means that
only the specified portions of the resource tree are to be included. Each path specified must be a relative path,
and will be interpreted relative to this source entry's path. File patterns are case−sensitive. A file matched by
one or more of these patterns is included in the corresponding package fragment root unless it is excluded by
one or more of this entry's exclusion patterns.

See getExclusionPatterns() for a discussion of the syntax and semantics of path patterns. The absence of any
inclusion patterns is semantically equivalent to the explicit inclusion pattern **.

The Java project API isOnClasspath checks both inclusion and exclusion patterns before determining
whether a particular resource is on the classpath.

Examples:

The inclusion pattern src/** by itself includes all files under a root folder named src.• 
The inclusion patterns src/** and tests/** includes all files under the root folders named src
and tests.

• 

The inclusion pattern src/** together with the exclusion pattern src/**/Foo.java includes all
files under a root folder named src except for ones named Foo.java.

• 

Classpath resolution

Since classpath variables and containers allow you to define dynamically bound classpath entries, the
classpath API distinguishes between a raw and a resolved classpath.   The raw classpath is the one originally
set on the Java project using setRawClasspath, and can be further queried by asking the project for
getRawClasspath.  The resolved classpath can be queried using getResolvedClasspath. This operation
triggers initialization of any variables and containers necessary to resolve the classpath.  Many Java Model
operations implicitly cause the Java build path to be resolved.  For example, computing a project's package
fragment roots requires the build path to be resolved.

Manipulating Java code

Your plug−in can use the JDT API to create classes or interfaces, add methods to existing types, or alter the
methods for types.

The simplest way to alter Java objects is to use the Java element API. More general techniques can be used to
work with the raw source code for a Java element.

Java Development Tooling overview

 Inclusion patterns 111



Code modification using Java elements

Generating a compilation unit

The easiest way to programmatically generate a compilation unit is to use
IPackageFragment.createCompilationUnit. You specify the name and contents of the compilation unit. The
compilation unit is created inside the package and the new ICompilationUnit is returned.

A compilation unit can be created generically by creating a file resource whose extension is ".java" in the
appropriate folder that corresponds to the package directory. Using the generic resource API is a back door to
the Java tooling, so the Java model is not updated until the generic resource change listeners are notified and
the JDT listeners update the Java model with the new compilation unit.

Modifying a compilation unit

Most simple modifications of Java source can be done using the Java element API.

For example, you can query a type from a compilation unit. Once you have the IType, you can use protocols
such as createField, createInitializer, createMethod, or createType to add source code members to the
type. The source code and information about the location of the member is supplied in these methods.

The ISourceManipulation interface defines common source manipulations for Java elements. This includes
methods for renaming, moving, copying, or deleting a type's member.

Working copies

Code can be modified by manipulating the compilation unit (and thus the underlying IFile is modified) or one
can modify an in−memory copy of the compilation unit called a working copy.

A working copy is obtained from a compilation unit using the getWorkingCopy method. (Note that the
compilation unit does not need to exist in the Java model in order for a working copy to be created.)  Whoever
creates such a working copy is responsible for discarding it when not needed any longer using the
discardWorkingCopy method.

Working copies modify an in−memory buffer. The getWorkingCopy() method creates a default buffer, but
clients can provide their own buffer implementation using the getWorkingCopy(WorkingCopyOwner,
IProblemRequestor, IProgressMonitor) method. Clients can manipulate the text of this buffer directly. If
they do so, they must synchronize the working copy with the buffer from time to time using either the
reconcile(int, boolean, WorkingCopyOwner, IProgressMonitor) method.

Finally a working copy can be saved to disk (replacing the original compilation unit) using the
commitWorkingCopy method.  

For example the following code snippet creates a working copy on a compilation unit using a custom working
copy owner. The snippet modifies the buffer, reconciles the changes, commits the changes to disk and finally
discards the working copy.

    // Get original compilation unit
    ICompilationUnit originalUnit = ...;

    // Get working copy owner

Java Development Tooling overview

 Code modification using Java elements 112



    WorkingCopyOwner owner = ...;

    // Create working copy
    ICompilationUnit workingCopy = originalUnit.getWorkingCopy(owner, null, null);

    // Modify buffer and reconcile
    IBuffer buffer = ((IOpenable)workingCopy).getBuffer();
    buffer.append("class X {}");
    workingCopy.reconcile(NO_AST, false, null, null);

    // Commit changes
    workingCopy.commitWorkingCopy(false, null);

    // Destroy working copy
    workingCopy.discardWorkingCopy();

Working copies can also be shared by several clients using a working copy owner. A working copy can be
later retrieved using the findWorkingCopy method. A shared working copy is thus keyed on the original
compilation unit and on a working copy owner.

The following shows how client 1 creates a shared working copy, client 2 retrieves this working copy, client 1
discards the working copy, and client 2 trying to retrieve the shared working copy notices it does not exist any
longer:

    // Client 1 & 2: Get original compilation unit
    ICompilationUnit originalUnit = ...;

    // Client 1 & 2: Get working copy owner
    WorkingCopyOwner owner = ...;

    // Client 1: Create shared working copy
    ICompilationUnit workingCopyForClient1 = originalUnit.getWorkingCopy(owner, null, null);

    // Client 2: Retrieve shared working copy
    ICompilationUnit workingCopyForClient2 = originalUnit.findWorkingCopy(owner);

    // This is the same working copy
    assert workingCopyForClient1 == workingCopyForClient2;

    // Client 1: Discard shared working copy
    workingCopyForClient1.discardWorkingCopy();

    // Client 2: Attempt to retrieve shared working copy and find out it's null
    workingCopyForClient2 = originalUnit.findWorkingCopy(owner);
    assert workingCopyForClient2 == null;

Code modification using the DOM/AST API

There are three ways to create a CompilationUnit. The first one is to use ASTParser. The second is to use
ICompilationUnit#reconcile(...). The third is to start from scratch using the factory methods on AST
(Abstract Syntax Tree).

Creating an AST from existing source code

An instance of ASTParser must be created with ASTParser.newParser(int).

The source code is given to the ASTParser with one of the following methods:

Java Development Tooling overview

Code modification using the DOM/AST API 113



setSource(char[]): to create the AST from source code• 
setSource(IClassFile): to create the AST from a classfile• 
setSource(ICompilationUnit): to create the AST from a compilation unit• 

Then the AST is created by calling createAST(IProgressMonitor).

The result is an AST with correct source positions for each node. The resolution of bindings has to be
requested before the creation of the tree with setResolveBindings(boolean). Resolving the bindings is a costly
operation and should be done only when necessary. As soon as the tree has been modified, all positions and
bindings are lost.

Creating an AST by reconciling a working copy

If a working copy is not consistent (has been modified) then an AST can be created by calling the method
reconcile(int, boolean, WorkingCopyOwner, IProgressMonitor). To request AST creation, call the
reconcile(...) method with AST.JLS2 as first parameter.

Its bindings are computed only if the problem requestor is active, or if the problem detection is forced.
Resolving the bindings is a costly operation and should be done only when necessary. As soon as the tree has
been modified, all positions and bindings are lost.

From scratch

It is possible to create a CompilationUnit from scratch using the factory methods on AST. These method
names start with new.... The following is an example that creates a HelloWorld class.

The first snippet is the generated output:

        package example;
        import java.util.*;
        public class HelloWorld {
                public static void main(String[] args) {
                        System.out.println("Hello" + " world");
                }
        }

The following snippet is the corresponding code that generates the output.

                AST ast = new AST();
                CompilationUnit unit = ast.newCompilationUnit();
                PackageDeclaration packageDeclaration = ast.newPackageDeclaration();
                packageDeclaration.setName(ast.newSimpleName("example"));
                unit.setPackage(packageDeclaration);
                ImportDeclaration importDeclaration = ast.newImportDeclaration();
                QualifiedName name = 
                        ast.newQualifiedName(
                                ast.newSimpleName("java"),
                                ast.newSimpleName("util"));
                importDeclaration.setName(name);
                importDeclaration.setOnDemand(true);
                unit.imports().add(importDeclaration);
                TypeDeclaration type = ast.newTypeDeclaration();
                type.setInterface(false);
                type.setModifiers(Modifier.PUBLIC);
                type.setName(ast.newSimpleName("HelloWorld"));

Java Development Tooling overview

Code modification using the DOM/AST API 114



                MethodDeclaration methodDeclaration = ast.newMethodDeclaration();
                methodDeclaration.setConstructor(false);
                methodDeclaration.setModifiers(Modifier.PUBLIC | Modifier.STATIC);
                methodDeclaration.setName(ast.newSimpleName("main"));
                methodDeclaration.setReturnType(ast.newPrimitiveType(PrimitiveType.VOID));
                SingleVariableDeclaration variableDeclaration = ast.newSingleVariableDeclaration();
                variableDeclaration.setModifiers(Modifier.NONE);
                variableDeclaration.setType(ast.newArrayType(ast.newSimpleType(ast.newSimpleName("String"))));
                variableDeclaration.setName(ast.newSimpleName("args"));
                methodDeclaration.parameters().add(variableDeclaration);
                org.eclipse.jdt.core.dom.Block block = ast.newBlock();
                MethodInvocation methodInvocation = ast.newMethodInvocation();
                name = 
                        ast.newQualifiedName(
                                ast.newSimpleName("System"),
                                ast.newSimpleName("out"));
                methodInvocation.setExpression(name);
                methodInvocation.setName(ast.newSimpleName("println")); 
                InfixExpression infixExpression = ast.newInfixExpression();
                infixExpression.setOperator(InfixExpression.Operator.PLUS);
                StringLiteral literal = ast.newStringLiteral();
                literal.setLiteralValue("Hello");
                infixExpression.setLeftOperand(literal);
                literal = ast.newStringLiteral();
                literal.setLiteralValue(" world");
                infixExpression.setRightOperand(literal);
                methodInvocation.arguments().add(infixExpression);
                ExpressionStatement expressionStatement = ast.newExpressionStatement(methodInvocation);
                block.statements().add(expressionStatement);
                methodDeclaration.setBody(block);
                type.bodyDeclarations().add(methodDeclaration);
                unit.types().add(type);

Retrieving extra positions

The DOM/AST node contains only a pair of positions (the starting position and the length of the node). This
is not always sufficient. In order to retrieve intermediate positions, the IScanner API should be used. For
example, we have an InstanceofExpression for which we want to know the positions of the instanceof
operator. We could write the following method to achieve this:

        private int[] getOperatorPosition(Expression expression, char[] source) {
                if (expression instanceof InstanceofExpression) {
                        IScanner scanner = ToolFactory.createScanner(false, false, false, false);
                        scanner.setSource(source);
                        int start = expression.getStartPosition();
                        int end = start + expression.getLength();
                        scanner.resetTo(start, end);
                        int token;
                        try {
                                while ((token = scanner.getNextToken()) != ITerminalSymbols.TokenNameEOF) {
                                        switch(token) {
                                                case ITerminalSymbols.TokenNameinstanceof:
                                                        return new int[] {scanner.getCurrentTokenStartPosition(), scanner.getCurrentTokenEndPosition()};
                                        }
                                }
                        } catch (InvalidInputException e) {
                        }
                }
                return null;
        }

Java Development Tooling overview

Code modification using the DOM/AST API 115



The IScanner is used to divide the input source into tokens. Each token has a specific value that is defined in
the ITerminalSymbols interface. It is fairly simple to iterate and retrieve the right token. We also recommend
that you use the scanner if you want to find the position of the super keyword in a SuperMethodInvocation.

Source code modifcations

Some source code modifications are not provided via the Java element API. A more general way to edit
source code (such as changing the source code for existing elements) is accomplished using the compilation
unit's raw source code and the rewrite API of the DOM/AST.

To perform DOM/AST rewriting, there two set of API: the descriptive rewriting and the modifying rewriting.

The descriptive API does not modify the AST but use ASTRewrite API to generate the descritions of
modifications. The AST rewriter collects descriptions of modifications to nodes and translates these
descriptions into text edits that can then be applied to the original source.

   // creation of a Document
   ICompilationUnit cu = ... ; // content is "public class X {\n}"
   String source = cu.getBuffer().getContents();
   Document document= new Document(source);

   // creation of DOM/AST from a ICompilationUnit
   ASTParser parser = ASTParser.newParser(AST.JLS2);
   parser.setSource(cu);
   CompilationUnit astRoot = (CompilationUnit) parser.createAST(null);

   // creation of ASTRewrite
   ASTRewrite rewrite = new ASTRewrite(astRoot.getAST());

   // description of the change
   SimpleName oldName = ((TypeDeclaration)astRoot.types().get(0)).getName();
   SimpleName newName = astRoot.getAST().newSimpleName("Y");
   rewrite.replace(oldName, newName, null);

   // computation of the text edits
   TextEdit edits = rewrite.rewriteAST(document, cu.getJavaProject().getOptions(true));

   // computation of the new source code
   edits.apply(document);
   String newSource = document.get();

   // update of the compilation unit
   cu.getBuffer().setContents(newSource);

The modifying API allows to modify directly the AST:

Request the recording of modifications (CompilationUnit.recordModifications()).• 
Perform the modifications on the AST Nodes.• 
And when the modifications are finished, generate text edits that can then be applied to the original
source (CompilationUnit.rewrite(...)).

• 

   // creation of a Document
   ICompilationUnit cu = ... ; // content is "public class X {\n}"
   String source = cu.getBuffer().getContents();
   Document document= new Document(source);

   // creation of DOM/AST from a ICompilationUnit

Java Development Tooling overview

Code modification using the DOM/AST API 116



   ASTParser parser = ASTParser.newParser(AST.JLS2);
   parser.setSource(cu);
   CompilationUnit astRoot = (CompilationUnit) parser.createAST(null);

   // start record of the modifications
   astRoot.recordModifications();

   // modify the AST
   TypeDeclaration typeDeclaration = (TypeDeclaration)astRoot.types().get(0)
   SimpleName newName = astRoot.getAST().newSimpleName("Y");
   typeDeclaration.setName(newName);

   // computation of the text edits
   TextEdit edits = astRoot.rewrite(document, cu.getJavaProject().getOptions(true));

   // computation of the new source code
   edits.apply(document);
   String newSource = document.get();

   // update of the compilation unit
   cu.getBuffer().setContents(newSource);

Responding to changes in Java elements

If your plug−in needs to know about changes to Java elements after the fact, you can register a Java
IElementChangedListener with JavaCore.

   JavaCore.addElementChangedListener(new MyJavaElementChangeReporter());

You can be more specific and specify the type of events you're interested in using
addElementChangedListener(IElementChangedListener, int).

For example, if you're only interested in listening for events during a reconcile operation:

   JavaCore.addElementChangedListener(new MyJavaElementChangeReporter(), ElementChangedEvent.POST_RECONCILE);

There are two kinds of events that are supported by JavaCore:

POST_CHANGE: Listeners of this event kind will get notified during the corresponding
POST_CHANGE resource change notification.

• 

POST_RECONCILE: Listeners of this event kind will get notified at the end of a reconcile
operation on a working copy (see ICompilationUnit.reconcile(int, boolean, WorkingCopyOwner,
IProgressMonitor)).

• 

Java element change listeners are similar conceptually to resource change listeners (described in tracking
resource changes). The following snippet implements a Java element change reporter that prints the element
deltas to the system console.

   public class MyJavaElementChangeReporter implements IElementChangedListener {
      public void elementChanged(ElementChangedEvent event) {
         IJavaElementDelta delta= event.getDelta();
         if (delta != null) {
            System.out.println("delta received: ");
            System.out.print(delta);
         }
      }

Java Development Tooling overview

 Responding to changes in Java elements 117



   }

The IJavaElementDelta includes the element that was changed and flags describing the kind of change that
occurred. Most of the time the delta tree is rooted at the Java Model level. Clients must then navigate this
delta using getAffectedChildren to find out what projects have changed.

The following example method traverses a delta and prints the elements that have been added, removed and
changed:

    void traverseAndPrint(IJavaElementDelta delta) {
        switch (delta.getKind()) {
            case IJavaElementDelta.ADDED:
                System.out.println(delta.getElement() + " was added");
                break;
            case IJavaElementDelta.REMOVED:
                System.out.println(delta.getElement() + " was removed");
                break;
            case IJavaElementDelta.CHANGED:
                System.out.println(delta.getElement() + " was changed");
                if ((delta.getFlags() & IJavaElementDelta.F_CHILDREN) != 0) {
                    System.out.println("The change was in its children");
                }
                if ((delta.getFlags() & IJavaElementDelta.F_CONTENT) != 0) {
                    System.out.println("The change was in its content");
                }
                /* Others flags can also be checked */
                break;
        }
        IJavaElementDelta[] children = delta.getAffectedChildren();
        for (int i = 0; i < children.length; i++) {
            traverseAndPrint(children[i]);
        }
    }

Several kinds of operations can trigger a Java element change notification. Here are some examples:

Creating a resource, e.g. IPackageFragment.createCompilationUnit (the delta indicates the
addition of the compilation unit)

• 

Modifying a resource, e.g. ICompilationUnit.createType (the delta indicates that the compilation
unit has changed and that a type was added as a child of this compilation unit)

• 

Modifying a project's classpath, e.g. IJavaProject.setRawClasspath (the delta indicates that package
fragment roots have been added to the classpath, removed from the classpath, or reordered on the
classpath)

• 

Modifying a classpath variable value, e.g. JavaCore.setClasspathVariable (the delta also indicates
that package fragment roots have been affected)

• 

Changing the source attachment of a .jar file, e.g. IPackageFragmentRoot.attachSource (the delta
indicates that the source was detached then attached)

• 

Reconciling a working copy with its buffer, e.g. ICompilationUnit.reconcile• 
Modifying an IFile that ends with ".java" and that is on the project's classpath, e.g. using
IFile.setContents (the delta indicates that a compilation unit was changed, but no finer−grained
information is provided as this was not done through a Java Model operation)

• 

Similar to IResourceDelta the Java element deltas can be batched using an IWorkspaceRunnable. The
deltas resulting from several Java Model operations that are run inside a IWorkspaceRunnable are merged
and reported at once.  

Java Development Tooling overview

 Responding to changes in Java elements 118



JavaCore provides a run method for batching Java element changes.

For example, the following code fragment will trigger 2 Java element change events:

    // Get package
    IPackageFragment pkg = ...;

    // Create 2 compilation units
    ICompilationUnit unitA = pkg.createCompilationUnit("A.java", "public class A {}", false, null);
    ICompilationUnit unitB = pkg.createCompilationUnit("B.java", "public class B {}", false, null);

Whereas the following code fragment will trigger 1 Java element change event:

    // Get package
    IPackageFragment pkg = ...;

    // Create 2 compilation units
    JavaCore.run(
        new IWorkspaceRunnable() {
                public void run(IProgressMonitor monitor) throws CoreException {
                    ICompilationUnit unitA = pkg.createCompilationUnit("A.java", "public class A {}", false, null);
                    ICompilationUnit unitB = pkg.createCompilationUnit("B.java", "public class B {}", false, null);
                }
        },
        null);

Using the Java search engine

Your plug−in can use the JDT API to search Java projects in the workspace for Java elements, such as method
references, field declarations, implementors of an interface, etc.

The entry point for Java search is the SearchEngine class. You can search for particular patterns inside a Java
element and scope the search to specific elements.  Search patterns can be created using createPattern.  A
pattern is scoped using createJavaSearchScope.  Once a pattern and scope are defined, the search method is
used to collect the results.

Search results are reported to a SearchRequestor which you must extend in order to access the results.

Preparing for search

A search operation will use both a pattern for describing the nature of the search, and a scope for restraining
the range of investigation.

Creating a Java search pattern

A search pattern defines how search results are found. You can either create a search pattern from a Java
element (see createPatternPattern(IJavaElement, int)) or from a string (see createPattern(String, int, int,
int).) The last method supports wildcards (i.e. '*') and can be used to widen the search results.

For example, creating a search pattern for searching for references to a given method is done as follows:

    // Get the method

Java Development Tooling overview

 Using the Java search engine 119



    IMethod method = ...;

    // Create search pattern
    SearchPattern pattern = SearchPattern.createPattern(method, IJavaSearchConstants.REFERENCES);

Or creating a search pattern for searching for declarations of all types starting with "Obj":

    // Create search pattern
    SearchPattern pattern = SearchPattern.createPattern("Obj*", IJavaSearchConstants.TYPE, IJavaSearchConstants.DECLARATIONS, SearchPattern.R_PATTERN_MATCH | SearchPattern.R_CASE_SENSITIVE);

The following search patterns are supported:

Package declarations• 
Type declarations• 
Field declarations• 
Method (and constructor) declarations• 
Package references• 
Type references• 
Interface implementors• 
Field references• 
Field write accesses• 
Field read accesses• 
Method (and constructor) references• 
Combinations of the above patterns using the OR pattern (see createOrPattern)• 

Creating a Java search scope

If you are interested in search results in a given project or even in a given package, or if you know that search
results can be only in a hierarchy of a given type, you can create the appropriate search scope using
createJavaSearchScope(IJavaElement[]) or createHierarchyScope(IType).

For example, creating a search scope on a given package is done as follows:

    // Get the package
    IPackageFragment pkg = ...;

    // Create search scope
    IJavaSearchScope scope = SearchEngine.createJavaSearchScope(new IJavaElement[] {pkg});

Or creating a search scope on the hierarchy of a given type is:

    // Get the type
    IType type = ...;

    // Create search scope
    IJavaSearchScope scope = SearchEngine.createHierarchyScope(type);

Finally, you can create a search scope on the entire workspace:

    // Create search scope
    IJavaSearchScope scope = SearchEngine.createWorkspaceScope();

Java Development Tooling overview

Preparing for search 120



Searching

Once you have created a search pattern and a search scope, and you have extended SearchRequestor, you
can start a search query as follows:

    // Get the search pattern
    SearchPattern pattern = ...;

    // Get the search scope
    IJavaSearchScope scope = ...;

    // Get the search requestor
    SearchRequestor requestor = ...;

    // Search
    SearchEngine searchEngine = new SearchEngine();
    searchEngine.search(pattern, new SearchParticipant[] {SearchEngine.getDefaultSearchParticipant()}, scope, requestor, null);

A notification that the search starts is sent to your search requestor using the beginReporting method.  Then,
each search result is reported using the acceptSearchMatch method. Finally endReporting indicates that the
search has ended.

Collecting search results

Search results are reported using the acceptSearchMatch method. Paragraphs below detail the search match.

Resources and Java elements

A search result can correspond to a Java element (e.g. a type declaration) or it can be contained in a Java
element (e.g. a reference to a type inside a method). The search engine always tries to find the innermost Java
element that corresponds to or that contains the search result. For example, searching for references to a
method could find such a reference in an initializer. The initializer that contains this method reference is the
element of the search match.

The search engine also tries to find the resource that contains the Java element. So if the Java element is a
method in a compilation unit, the resource is the corresponding IFile. If the element is contained in a .jar file,
the resource is the .jar file, if this .jar file is in the workspace. If it is an external .jar file, then the resource is
null.

Source positions

Source positions are given relative to the compilation unit that contains the search result. If the search result is
contained in a .jar file, the source positions are relative to the attached source. They are (−1, −1) if there is no
source attached to the .jar file.

Accurate versus inaccurate search results

In most cases search results are accurate, meaning that the search engine was able to determine that the given
match is what was asked for. However in some cases the search engine is unable to do so, in such cases the
match is inaccurate. Some possible reasons why a match could be inaccurate are:

The classpath on the project that contains the result is not properly set. For example, it refers to a• 

Java Development Tooling overview

 Searching 121



project that is not accesible, a jar on the classpath requires another jar that is not on the classpath, etc.
The user code would not compile. For example, it refers to a class that is not yet defined.• 

JDT Core options

JDT Core options control the behavior of core features such as the Java compiler, code formatter, code assist,
and other core behaviors.  The APIs for accessing the options are defined in JavaCore.  Options can be
accessed as a group as follows:

JavaCore.getDefaultOptions() − Answers the default value of the options.• 
JavaCore.getOptions() − Answers the current values of the options.• 
JavaCore.setOptions(Hashtable newOptions) − Replaces the options values by new values.• 

Options can also be accessed individually by a string name.

JavaCore.getOption(String optionName) − Answers the value of a specific option.• 

Options are stored as a hashtable of all known configurable options with their values. Helper constants have
been defined on JavaCore for each option ID and its possible constant values.

The following code fragment restores the value of all core options to their defaults except for one
(COMPILER_PB_DEPRECATION), which is set specifically.

   // Get the current options
   Hashtable options = JavaCore.getDefaultOptions();

   // Change the value of an option
   options.put(JavaCore.COMPILER_PB_DEPRECATION, JavaCore.ERROR);

   // Set the new options
   JavaCore.setOptions(options);

The following code fragment keeps the value of the current options and modifies only one
(COMPILER_PB_DEPRECATION):

   // Get the current options
   Hashtable options = JavaCore.getOptions();

   // Change the value of an option
   options.put(JavaCore.COMPILER_PB_DEPRECATION, JavaCore.ERROR);

   // Set the new options
   JavaCore.setOptions(options);

Project specific options

The values of options can be overridden per project using protocol in IJavaProject.

The following code fragment retrieves the value of an option (COMPILER_PB_DEPRECATION) for a
specific project in two different ways.  The boolean parameter controls whether only the project−specific
options should be returned in a query or whether the project's option values should be merged with the values

Java Development Tooling overview

 JDT Core options 122



in JavaCore.

   // Get the project
   IJavaProject project = ...;

   // See if the value of an option has been set in this project
   String value = project.getOption(JavaCore.COMPILER_PB_DEPRECATION, false);
   if (value == null) {
     // no specific option was set on the project
     ...
   }

   // Get the value of an option from this project.  Use the value from 
   // JavaCore value if none is specified for the project
   String value = project.getOption(JavaCore.COMPILER_PB_DEPRECATION, true);

Major change in default JDT Core 3.0 options

Default compliance level has been changed. Now default compliance level is 1.4 instead of 1.3 and default
target platform is 1.2 instead of 1.1.

JDT Core options descriptions

The following tables describe the available JDT Core options.  The option id is shown in parentheses and the
default value is shown in bold italics.

Options categories

Compiler options• 
Builder options• 
JavaCore options• 
Formatter options• 
CodeAssist options• 

Compiler options

Description Values

Generating Local Variable Debug Attribute (COMPILER_LOCAL_VARIABLE_ATTR)

When generated, this attribute will enable local variable names to be displayed
in the debugger, only in places where variables are definitely assigned (.class file
is then bigger)

GENERATE

DO_NOT_GENERATE

Generating Line Number Debug Attribute (COMPILER_LINE_NUMBER_ATTR)

When generated, this attribute will enable source code highlighting in the
debugger (.class file is then bigger).

GENERATE

DO_NOT_GENERATE

Generating Source Debug Attribute (COMPILER_SOURCE_FILE_ATTR)

When generated, this attribute will enable the debugger to present the
corresponding source code.

GENERATE

DO_NOT_GENERATE

Preserving Unused Local Variables (COMPILER_CODEGEN_UNUSED_LOCAL)

Java Development Tooling overview

Major change in default JDT Core 3.0 options 123



Unless requested to preserve unused local variables (i.e. never read), the
compiler will optimize them out, potentially altering debugging.

PRESERVE

OPTIMIZE_OUT

Defining Target Java Platform (COMPILER_CODEGEN_TARGET_PLATFORM)

For binary compatibility reason, .class files can be tagged with certain VM
versions and later. Note that the "1.4" target requires you to toggle the
compliance mode to "1.4" also.

VERSION_1_1

VERSION_1_2

VERSION_1_3

VERSION_1_4

Inline JSR Bytecode Instruction (COMPILER_CODEGEN_INLINE_JSR_BYTECODE)

When enabled, the compiler will no longer generate JSR instructions, but rather
inline corresponding subroutine code sequences (mostly corresponding to try
finally blocks). The generated code will thus get bigger, but will load faster on
virtual machines since the verification process is then much simpler. This mode
is anticipating support for the Java Specification Request 202.

ENABLED

DISABLED

Javadoc Comment Support (COMPILER_DOC_COMMENT_SUPPORT)

When this support is disabled, the compiler will ignore all javadoc problems
options settings and will not report any javadoc problem. It will also not find any
reference in javadoc comment and DOM AST Javadoc node will be only a flat
text instead of having structured tag elements.

ENABLED

DISABLED

Reporting Unreachable Code (COMPILER_PB_UNREACHABLE_CODE)

Unreachable code can optionally be reported as an error, warning or simply
ignored. The bytecode generation will always optimize it out.

ERROR

WARNING

IGNORE

Reporting Invalid Import (COMPILER_PB_INVALID_IMPORT)

An import statement that cannot be resolved might optionally be reported as an
error, as a warning or ignored.

ERROR

WARNING

IGNORE

Reporting Attempt to Override Package−Default Method
(COMPILER_PB_OVERRIDING_PACKAGE_DEFAULT_METHOD)

A package default method is not visible in a different package, and thus cannot
be overridden. When enabling this option, the compiler will signal such scenarii
either as an error or a warning.

ERROR

WARNING

IGNORE

Reporting Method With Constructor Name
(COMPILER_PB_METHOD_WITH_CONSTRUCTOR_NAME)

Naming a method with a constructor name is generally considered poor style
programming. When enabling this option, the compiler will signal such scenarii
either as an error or a warning.

ERROR

WARNING

IGNORE

Reporting Deprecation (COMPILER_PB_DEPRECATION)

When enabled, the compiler will signal use of deprecated API either as an errorERROR

Java Development Tooling overview

Major change in default JDT Core 3.0 options 124



or a warning. WARNING

IGNORE

Reporting Deprecation Inside Deprecated Code
(COMPILER_PB_DEPRECATION_IN_DEPRECATED_CODE)

When enabled, the compiler will signal use of deprecated API either as an error
or a warning.

ENABLED

DISABLED

Reporting Deprecation When Overriding Deprecated Method
(COMPILER_PB_DEPRECATION_WHEN_OVERRIDING_DEPRECATED_METHOD)

When enabled, the compiler will signal the declaration of a method overriding a
deprecated one.

ENABLED

DISABLED

Reporting Hidden Catch Block (COMPILER_PB_HIDDEN_CATCH_BLOCK)

Local to a try statement, some catch blocks may hide others , e.g.

   try {
      throw new java.io.CharConversionException();
   } catch (java.io.CharConversionException e) {
   } catch (java.io.IOException e) {}.

When enabling this option, the compiler will issue an error or a warning for
hidden catch blocks corresponding to checked exceptions

ERROR

WARNING

IGNORE

Reporting Unused Local (COMPILER_PB_UNUSED_LOCAL)

When enabled, the compiler will issue an error or a warning for unused local
variables (i.e. variables never read from)

ERROR

WARNING

IGNORE

Reporting Unused Parameter (COMPILER_PB_UNUSED_PARAMETER)

When enabled, the compiler will issue an error or a warning for unused method
parameters (i.e. parameters never read from)

ERROR

WARNING

IGNORE

Reporting Unused Parameter if Implementing Abstract Method
(COMPILER_PB_UNUSED_PARAMETER_WHEN_IMPLEMENTING_ABSTRACT)

When enabled, the compiler will signal unused parameters in abstract method
implementations.

ENABLED

DISABLED

Reporting Unused Parameter if Overriding Concrete Method
(COMPILER_PB_UNUSED_PARAMETER_WHEN_OVERRIDING_CONCRETE)

When enabled, the compiler will signal unused parameters in methods
overriding concrete ones.

ENABLED

DISABLED

Reporting Unused Import (COMPILER_PB_UNUSED_IMPORT)

When enabled, the compiler will issue an error or a warning for unused import
reference

ERROR

WARNING

Java Development Tooling overview

Major change in default JDT Core 3.0 options 125



IGNORE

Reporting Unused Private Members (COMPILER_PB_UNUSED_PRIVATE_MEMBER)

When enabled, the compiler will issue an error or a warning whenever a private
method or field is declared but never used within the same unit.

ERROR

WARNING

IGNORE

Reporting Synthetic Access Emulation (COMPILER_PB_SYNTHETIC_ACCESS_EMULATION)

When enabled, the compiler will issue an error or a warning whenever it
emulates access to a non−accessible member of an enclosing type. Such access
can have performance implications.

ERROR

WARNING

IGNORE

Reporting Non−Externalized String Literal (COMPILER_PB_NON_NLS_STRING_LITERAL)

When enabled, the compiler will issue an error or a warning for non externalized
String literal (i.e. non tagged with //$NON−NLS−<n>$)

ERROR

WARNING

IGNORE

Reporting Usage of 'assert' Identifier (COMPILER_PB_ASSERT_IDENTIFIER)

When enabled, the compiler will issue an error or a warning whenever 'assert' is
used as an identifier (reserved keyword in 1.4)

ERROR

WARNING

IGNORE

Reporting Non−Static Reference to a Static Member (COMPILER_PB_STATIC_ACCESS_RECEIVER)

When enabled, the compiler will issue an error or a warning whenever a static
field or method is accessed with an expression receiver.

ERROR

WARNING

IGNORE

Reporting Indirect Reference to a Static Member (COMPILER_PB_INDIRECT_STATIC_ACCESS)

When enabled, the compiler will issue an error or a warning whenever a static
field or method is accessed in an indirect way. A reference to a static member
should preferably be qualified with its declaring type name.

ERROR

WARNING>

IGNORE

Reporting Assignment with No Effect (COMPILER_PB_NO_EFFECT_ASSIGNMENT)

When enabled, the compiler will issue an error or a warning whenever an
assignment has no effect (e.g. 'x = x').

ERROR

WARNING

IGNORE

Reporting Empty Statements and Unnecessary Semicolons (COMPILER_PB_EMPTY_STATEMENT)

When enabled, the compiler will issue an error or a warning if an empty
statement or a unnecessary semicolon is encountered.

ERROR

WARNING

IGNORE

Reporting Unnecessary Type Check (COMPILER_PB_UNNECESSARY_TYPE_CHECK)

When enabled, the compiler will issue an error or a warning when a cast or an
instanceof operation is unnecessary.

ERROR

Java Development Tooling overview

Major change in default JDT Core 3.0 options 126



WARNING

IGNORE

Reporting Unnecessary Else (COMPILER_PB_UNNECESSARY_ELSE)

When enabled, the compiler will issue an error or a warning when a statement is
unnecessarily nested within an else clause (in situation where then clause is not
completing normally).

ERROR

WARNING

IGNORE

Reporting Interface Method not Compatible with non−Inherited Methods
(COMPILER_PB_INCOMPATIBLE_NON_INHERITED_INTERFACE_METHOD)

When enabled, the compiler will issue an error or a warning whenever an
interface defines a method incompatible with a non−inherited Object one.

ERROR

WARNING

IGNORE

Reporting Usage of char[] Expressions in String Concatenations
(COMPILER_PB_CHAR_ARRAY_IN_STRING_CONCATENATION)

When enabled, the compiler will issue an error or a warning whenever a char[]
expression is used in String concatenations (e.g. "hello" + new
char[]{'w','o','r','l','d'}),

ERROR

WARNING

IGNORE

Reporting Local Variable Declaration Hiding another Variable
(COMPILER_PB_LOCAL_VARIABLE_HIDING)

When enabled, the compiler will issue an error or a warning whenever a local
variable declaration is hiding some field or local variable (either locally,
inherited or defined in enclosing type).

ERROR

WARNING

IGNORE

Reporting Field Declaration Hiding another Variable (COMPILER_PB_FIELD_HIDING)

When enabled, the compiler will issue an error or a warning whenever a field
declaration is hiding some field or local variable (either locally, inherited or
defined in enclosing type).

ERROR

WARNING

IGNORE

Reporting Special Parameter Hiding another Field
(COMPILER_PB_SPECIAL_PARAMETER_HIDING_FIELD)

When enabled, the compiler will signal cases where a constructor or setter
method parameter declaration is hiding some field (either locally, inherited or
defined in enclosing type).

ENABLED

DISABLED

Reporting Possible Accidental Boolean Assignment(
COMPILER_PB_POSSIBLE_ACCIDENTAL_BOOLEAN_ASSIGNMENT)

When enabled, the compiler will issue an error or a warning if a boolean
assignment is acting as the condition of a control statement (where it probably
was meant to be a boolean comparison).

ERROR

WARNING

IGNORE

Reporting Undocumented Empty Block (COMPILER_PB_UNDOCUMENTED_EMPTY_BLOCK)

When enabled, the compiler will issue an error or a warning when an empty
block is detected and it is not documented with any comment.

ERROR

Java Development Tooling overview

Major change in default JDT Core 3.0 options 127



WARNING

IGNORE

Reporting Finally Blocks Not Completing Normally
(COMPILER_PB_FINALLY_BLOCK_NOT_COMPLETING)

When enabled, the compiler will issue an error or a warning when a finally block
does not complete normally.

ERROR

WARNING

IGNORE

Reporting Unused Declared Thrown Exception
(COMPILER_PB_UNUSED_DECLARED_THROWN_EXCEPTION)

When enabled, the compiler will issue an error or a warning when a method or a
constructor is declaring a thrown checked exception, but never actually raises it
in its body.

ERROR

WARNING

IGNORE

Reporting Unused Declared Thrown Exception in Overridind Method
(COMPILER_PB_UNUSED_DECLARED_THROWN_EXCEPTION_WHEN_OVERRIDING)

When disabled, the compiler will not include overriding methods in its diagnosis
for unused declared thrown exceptions.

ENABLED

DISABLED

Reporting Unqualified Access to Field (COMPILER_PB_UNQUALIFIED_FIELD_ACCESS)

When enabled, the compiler will issue an error or a warning when a field is
access without any qualification. In order to improve code readability, it should
be qualified, e.g. 'x' should rather be written 'this.x'.

ERROR

WARNING

IGNORE

Reporting Invalid Javadoc Comment (COMPILER_PB_INVALID_JAVADOC)

This is the generic control for the severity of Javadoc problems. When enabled,
the compiler will issue an error or a warning for a problem in Javadoc.

ERROR

WARNING

IGNORE

Visibility Level For Invalid Javadoc Tags
(COMPILER_PB_INVALID_JAVADOC_TAGS_VISIBILITY)

Set the minimum visibility level for Javadoc tag problems. Below this level
problems will be ignored.

PUBLIC

PROTECTED

DEFAULT

PRIVATE

Reporting Invalid Javadoc Tags (COMPILER_PB_INVALID_JAVADOC_TAGS)

When enabled, the compiler will signal unbound or unexpected reference tags in
Javadoc. A 'throws' tag referencing an undeclared exception would be
considered as unexpected.
Note that this diagnosis can be enabled based on the visibility of the construct
associated with the Javadoc; also see the setting
"org.eclipse.jdt.core.compiler.problem.invalidJavadocTagsVisibility".

ENABLED

DISABLED

Reporting Missing Javadoc Tags (COMPILER_PB_MISSING_JAVADOC_TAGS)

Java Development Tooling overview

Major change in default JDT Core 3.0 options 128



This is the generic control for the severity of Javadoc missing tag problems.
When enabled, the compiler will issue an error or a warning when tags are
missing in Javadoc comments.
Note that this diagnosis can be enabled based on the visibility of the construct
associated with the Javadoc.

ERROR

WARNING

IGNORE

Visibility Level For Missing Javadoc Tags
(COMPILER_PB_MISSING_JAVADOC_TAGS_VISIBILITY)

Set the minimum visibility level for Javadoc missing tag problems. Below this
level problems will be ignored.

PUBLIC

PROTECTED

DEFAULT

PRIVATE

Reporting Missing Javadoc Tags on Overriding Methods
(COMPILER_PB_MISSING_JAVADOC_TAGS_OVERRIDING)

Specify whether the compiler will verify overriding methods in order to report
Javadoc missing tag problems.

ENABLED

DISABLED

Reporting Missing Javadoc Comments (COMPILER_PB_MISSING_JAVADOC_COMMENTS)

TThis is the generic control for the severity of missing Javadoc comment
problems. When enabled, the compiler will issue an error or a warning when
Javadoc comments are missing.
Note that this diagnosis can be enabled based on the visibility of the construct
associated with the expected Javadoc.

ERROR

WARNING

IGNORE

Visibility Level For Missing Javadoc Comments
(COMPILER_PB_MISSING_JAVADOC_COMMENTS_VISIBILITY)

Set the minimum visibility level for missing Javadoc problems. Below this level
problems will be ignored.

PUBLIC

PROTECTED

DEFAULT

PRIVATE

Reporting Missing Javadoc Comments on Overriding Methods
(COMPILER_PB_MISSING_JAVADOC_COMMENTS_OVERRIDING)

Specify whether the compiler will verify overriding methods in order to report
missing Javadoc comment problems.

ENABLED

DISABLED

Setting Source Compatibility Mode (COMPILER_SOURCE)

Specify whether source is 1.3 or 1.4 compatible. From 1.4 on, 'assert' is a
keyword reserved for assertion support. Also note, than when toggling to 1.4
mode, the target VM level should be set to "1.4" and the compliance mode
should be "1.4".

VERSION_1_3

VERSION_1_4

Setting Compliance Level (COMPILER_COMPLIANCE)

Select the compliance level for the compiler. In "1.3" mode, source and target
settings should not go beyond "1.3" level.

VERSION_1_3

VERSION_1_4

Maximum number of problems reported per compilation unit (COMPILER_PB_MAX_PER_UNIT)

Java Development Tooling overview

Major change in default JDT Core 3.0 options 129



Specify the maximum number of problems reported on each compilation unit (if
the maximum is zero then all problems are reported).

a positive integer.
Default value is 100

Define the Automatic Task Tags (COMPILER_TASK_TAGS)

When the tag is non empty, the compiler will issue a task marker whenever it
encounters one of the corresponding tag inside any comment in Java source
code.  Generated task messages will include the tag, and range until the next line
separator or comment ending, and will be trimmed.

{<tag>[,<tag>]*}.
Default value is
"TODO,FIXME,
XXX"

Define the Automatic Task Priorities (COMPILER_TASK_PRIORITIES)

In parallel with the Automatic Task Tags, this list defines the priorities (high,
normal or low) of the task markers issued by the compiler.  If the default is
specified, the priority of each task marker is "NORMAL". Possible priorities are
"HIGH", "NORMAL" or "LOW"

{<priority>[,<priority>]*}.
Default value is
"NORMAL,HIGH,
NORMAL"

Determine whether task tags are case−sensitive (COMPILER_TASK_CASE_SENSITIVE)

When enabled, task tags are considered in a case−sensitive way. ENABLED

DISABLED

Builder options

Description Values

Specifying Filters for Resource Copying Control (CORE_JAVA_BUILD_RESOURCE_COPY_FILTER)

Specify filters to control the resource copy process. (<name> is a file name pattern
(only * wild−cards allowed) or the name of a folder which ends with '/')

{<name>[,<name>]*}.
Default value is ""

Abort if Invalid Classpath (CORE_JAVA_BUILD_INVALID_CLASSPATH)

Instruct the builder to abort if the classpath is invalid ABORT

IGNORE

Cleaning Output Folder(s) (CORE_JAVA_BUILD_CLEAN_OUTPUT_FOLDER)

Indicate whether the JavaBuilder is allowed to clean the output folders when
performing full build operations.

CLEAN

IGNORE

Reporting Duplicate Resources (CORE_JAVA_BUILD_DUPLICATE_RESOURCE)

Instruct the builder to abort if the classpath is invalid ERROR

WARNING
JavaCore options

Description Values

Computing Project Build Order (CORE_JAVA_BUILD_ORDER)

Indicate whether JavaCore should enforce the project build order to be based on the
classpath prerequisite chain. When requesting to compute, this takes over the platform
default order (based on project references).

COMPUTE

IGNORE

Specify Default Source Encoding Format (CORE_ENCODING)

Get the encoding format for compiled sources. This setting is read−only, it is equivalent
to ResourcesPlugin.getEncoding().

any of the
supported

Java Development Tooling overview

JDT Core options descriptions 130



encoding name.
Default value is
platform default

Reporting Incomplete Classpath (CORE_INCOMPLETE_CLASSPATH)

Indicate the severity of the problem reported when an entry on the classpath doesn't
exist, is not legitimate, or is not visible (e.g. a referenced project is closed).

ERROR

WARNING

Reporting Classpath Cycle (CORE_CIRCULAR_CLASSPATH)

Indicate the severity of the problem reported when a project is involved in a cycle.ERROR

WARNING

Reporting Incompatible JDK Level for Required Binaries (CORE_INCOMPATIBLE_JDK_LEVEL)

Indicate the severity of the problem reported when a project prerequisites another
project or library with an incompatible target JDK level (e.g. project targeting 1.1 vm,
but compiled against 1.4 libraries).

ERROR

WARNING

IGNORE

Enabling Usage of Classpath Exclusion Patterns
(CORE_ENABLE_CLASSPATH_EXCLUSION_PATTERNS)

When set to "disabled", no entry on a project classpath can be associated with an
exclusion or inclusion pattern.

ENABLED

DISABLED

Enabling Usage of Classpath Multiple Output Locations
(CORE_ENABLE_CLASSPATH_MULTIPLE_OUTPUT_LOCATIONS)

When set to "disabled", no entry on a project classpath can be associated with a specific
output location, preventing thus usage of multiple output locations

ENABLED

DISABLED

Formatter options

Description Values

Inserting New Line Before Opening Brace (FORMATTER_NEWLINE_OPENING_BRACE)

When Insert, a new line is inserted before an opening brace, otherwise nothing is
inserted

INSERT

DO_NOT_INSERT

Inserting New Line Inside Control Statement (FORMATTER_NEWLINE_CONTROL)

When Insert, a new line is inserted between } and following else, catch, finally INSERT

DO_NOT_INSERT

Clearing Blank Lines (FORMATTER_CLEAR_BLANK_LINES)

When Clear all, all blank lines are removed. When Preserve one, only one is kept and
all others removed.

CLEAR_ALL

PRESERVE_ONE

Inserting New Line Between Else/If (FORMATTER_NEWLINE_ELSE_IF)

When Insert, a blank line is inserted between an else and an if when they are
contiguous. When choosing to not insert, else−if will be kept on the same line when
possible.

INSERT

DO_NOT_INSERT

Inserting New Line In Empty Block (FORMATTER_NEWLINE_EMPTY_BLOCK)

Java Development Tooling overview

JDT Core options descriptions 131



When insert, a line break is inserted between contiguous { and }, if } is not followed by
a keyword.

INSERT

DO_NOT_INSERT

Splitting Lines Exceeding Length (FORMATTER_LINE_SPLIT)

Enable splitting of long lines (exceeding the configurable length). Length of 0 will
disable line splitting

a positive integer.
Default value is 80

Compacting Assignment (FORMATTER_COMPACT_ASSIGNMENT)

Assignments can be formatted asymmetrically, e.g. 'int x= 2;', when Normal, a space is
inserted before the assignment operator

COMPACT

NORMAL

Defining Indentation Character (FORMATTER_TAB_CHAR)

Either choose to indent with tab characters or spaces TAB

SPACE

Defining Space Indentation Length (FORMATTER_TAB_SIZE)

When using spaces, set the amount of space characters to use for each indentation
mark.

a positive integer.
Default value is 4

Inserting space in cast expression (FORMATTER_SPACE_CASTEXPRESSION)

When Insert, a space is added between the type and the expression in a cast expression.INSERT

DO_NOT_INSERT

CodeAssist options

Description Values

Activate Visibility Sensitive Completion (CODEASSIST_VISIBILITY_CHECK)

When active, completion doesn't show that you can not see (e.g. you can not see
private methods of a super class).

ENABLED

DISABLED

Automatic Qualification of Implicit Members (CODEASSIST_IMPLICIT_QUALIFICATION)

When active, completion automatically qualifies completion on implicit field
references and message expressions.

ENABLED

DISABLED

Define the Prefixes for Field Name (CODEASSIST_FIELD_PREFIXES)

When the prefixes is non empty, completion for field name will begin with one of
the proposed prefixes.

{<prefix>[,<prefix>]*}.
Default value is ""

Define the Prefixes for Static Field Name (CODEASSIST_STATIC_FIELD_PREFIXES)

When the prefixes is non empty, completion for static field name will begin with
one of the proposed prefixes.

{<prefix>[,<prefix>]*}.
Default value is ""

Define the Prefixes for Local Variable Name (CODEASSIST_LOCAL_PREFIXES)

When the prefixes is non empty, completion for local variable name will begin with
one of the proposed prefixes.

{<prefix>[,<prefix>]*}.
Default value is ""

Define the Prefixes for Argument Name (CODEASSIST_ARGUMENT_PREFIXES)

When the prefixes is non empty, completion for argument name will begin with one
of the proposed prefixes.

{<prefix>[,<prefix>]*}.
Default value is ""

Java Development Tooling overview

JDT Core options descriptions 132



Define the Suffixes for Field Name (CODEASSIST_FIELD_SUFFIXES)

When the suffixes is non empty, completion for field name will end with one of the
proposed suffixes.

{<suffix>[,<suffix>]*}.
Default value is ""

Define the Suffixes for Static Field Name (CODEASSIST_STATIC_FIELD_SUFFIXES)

When the suffixes is non empty, completion for static field name will end with one
of the proposed suffixes.

{<suffix>[,<suffix>]*}.
Default value is ""

Define the Suffixes for Local Variable Name (CODEASSIST_LOCAL_SUFFIXES)

When the suffixes is non empty, completion for local variable name will end with
one of the proposed suffixes.

{<suffix>[,<suffix>]*}.
Default value is ""

Define the Suffixes for Argument Name (CODEASSIST_ARGUMENT_SUFFIXES)

When the suffixes is non empty, completion for argument name will end with one
of the proposed suffixes.

{<suffix>[,<suffix>]*}.
Default value is ""

Performing code assist on Java code

The JDT API allows other plug−ins to perform code assist or code select on some Java elements. Elements
that allow this manipulation should implement ICodeAssist. 

There are two kinds of manipulation:

Code completion − compute the completion of a Java token.• 
Code selection − answer the Java element indicated by the selected text of a given offset and length.• 

In the Java model there are two elements that implement this interface: IClassFile and ICompilationUnit. 
Code completion and code selection only answer results for a class file if it has attached source.

Code completion

Performing a code completion

The only way to programmatically perform code completion is to invoke ICodeAssist.codeComplete. You
specify the offset in the compilation unit after which the code completion is desired.  You must also supply an
instance of ICompletionRequestor to accept the possible completions.

Each method in ICompletionRequestor accepts a different kind of proposal for code completion.  The
parameters of each method include text that describes the proposed element (its name, declaring type, etc.), its
proposed position for insertion in the compilation unit, and its relevance.  

A completion requestor can accept many different types of completions including the insertion of the
following elements:

anonymous types• 
classes• 
fields• 
interfaces• 
keywords• 

Java Development Tooling overview

 Performing code assist on Java code 133



labels• 
local variables• 
method call• 
method declaration• 
modifier• 
package import or reference• 
type• 
variable name• 

The completion requestor must also be able to accept compilation errors.  

If your plug−in is not interested in every kind of code completion, a CompletionRequestorAdapter can be
used so that you need only implement the kinds of completions you are interested in.  The following example
shows an adapter that is only used to accept class completions.

   // Get the compilation unit
   ICompilationUnit unit = ...;

   // Get the offset
   int offset = ...;

   // Create the requestor
   ICompletionRequestor requestor = new CompletionRequestorAdapter() {
      public void acceptClass(
         char[] packageName,
         char[] className,
         char[] completionName,
         int modifiers,
         int completionStart,
         int completionEnd,
         int relevance) {
         System.out.println("propose a class named " + new String(className));
      }
   };

   // Compute proposals
   unit.codeComplete(offset, requestor);

Completion relevance

Because there may be many different possible completions, the notion of relevance is used to compare the
relevance of a suggested completion to other proposals.  Relevance is represented by a positive integer.  The
value has no implicit meaning except to be used relative to the value for other proposals.  The relevance of a
code completion candidate can be affected by the expected type of the expression, as it relates to the types in
the surrounding code, such as variable types, cast types, return types, etc.  The presence of an expected prefix
or suffix in a completion also affects its relevance.

Code completion options

The JDT Core plug−in defines options that control the behavior of code completion.  These options can be
changed by other plug−ins.  

Activate Visibility Sensitive Completion
When this option is active, code completion will not answer elements that are not visible in the
current context.  (For example, it will not answer private methods of a super class.)

• 

Java Development Tooling overview

Code completion 134



Automatic Qualification of Implicit Members
When this option is active, completion automatically qualifies completion on implicit field references
and message expressions.

• 

Additional options allow you to specify prefixes and suffixes for the proposed completion names for fields,
static fields, local variables, and method arguments.  

See  JDT Core Code Assist Options for more information about the code assist options and their defaults.

Code selection

Performing a code selection

Code selection is used to find the Java element represented by a range of text (typically the selected text) in a
compilation unit.  To programmatically perform code selection, you must invoke ICodeAssist.codeSelect.
You must supply the starting index location of the selection and its length.  The result is an array of Java
elements.  Most of the time there is only one element in the array, but if the selection is ambiguous then all the
possible elements are returned.

In the following example, code select is invoked for a compilation unit.

   // Get the compilation unit
   ICompilationUnit unit = ...;

   // Get the offset and length
   int offset = ...;
   int length = ...;

   // perform selection
   IJavaElement[] elements = unit.codeSelect(offset, length);
   System.out.println("the selected element is " + element[0].getElementName());

Selection at cursor location

When the selection length is specified as 0, a selection will be computed by finding the complete token that
encloses the specified offset.  Consider the following example method:

   public void fooMethod(Object) {
   }

If you specify an offset after the first character of fooMethod, and you specify a length of 0,  then the selection
will be computed to include the entire token fooMethod. If instead, you specify a length of 5, the selection will
considered as ooMet.

Java model

The Java model is the set of classes that model the objects associated with creating, editing, and building a
Java program. The Java model classes are defined in org.eclipse.jdt.core.  These classes implement Java
specific behavior for resources and further decompose Java resources into model elements.

Java Development Tooling overview

 Code selection 135



Java elements

The package org.eclipse.jdt.core defines the classes that model the elements that compose a Java program.
The JDT uses an in−memory object model to represent the structure of a Java program. This structure is
derived from the project's class path. The model is hierarchical. Elements of a program can be decomposed
into child elements.

Manipulating Java elements is similar to manipulating resource objects.  When you work with a Java element,
you are actually working with a handle to some underlying model object.  You must use the exists() protocol
to determine whether the element is actually present in the workspace. 

The following table summarizes the different kinds of Java elements.

Element
Description

IJavaModel
Represents the root Java element, corresponding to the workspace. The parent of
all projects with the Java nature. It also gives you access to the projects without
the java nature.

IJavaProject Represents a Java project in the workspace. (Child of IJavaModel)

IPackageFragmentRoot
Represents a set of package fragments, and maps the fragments to an underlying
resource which is either a folder, JAR, or ZIP file. (Child of IJavaProject)

IPackageFragment
Represents the portion of the workspace that corresponds to an entire package, or
a portion of the package. (Child of IPackageFragmentRoot )

ICompilationUnit Represents a Java source (.java) file. (Child of IPackageFragment )

IPackageDeclaration
Represents a package declaration in a compilation unit. (Child of
ICompilationUnit )

IImportContainer
Represents the collection of package import declarations in a compilation unit.
(Child of ICompilationUnit )

IImportDeclaration Represents a single package import declaration. (Child of IImportContainer )

IType
Represents either a source type inside a compilation unit, or a binary type inside a
class file.

IField Represents a field inside a type. (Child of IType )

IMethod Represents a method or constructor inside a type. (Child of IType )

IInitializer Represents a static or instance initializer inside a type. (Child of IType )

IClassFile Represents a compiled (binary) type.  (Child of IPackageFragment )

All Java elements support the IJavaElement interface.

Some of the elements are shown in the Packages view.  These elements implement the IOpenable interface,
since they must be opened before they can be navigated. The figure below shows how these elements are
represented in the Packages view.

Java Development Tooling overview

 Java elements 136



The Java elements that implement IOpenable are created primarily from information found in the underlying
resource files.  The same elements are represented generically in the resource navigator view.

Other elements correspond to the items that make up a Java compilation unit. The figure below shows a Java
compilation unit and a content outliner that displays the source elements in the compilation unit.

Java Development Tooling overview

 Java elements 137



These elements implement the ISourceReference interface, since they can provide corresponding source
code. (As these elements are selected in the content outliner, their corresponding source code is shown in the
Java editor).

Java elements and their resources

Many of the Java elements correspond to generic resources in the workspace.  When you want to create Java
elements from a generic resource the class JavaCore is the best starting point. The following code snippet
shows how to get Java elements from their corresponding resources.

        private void createJavaElementsFrom(IProject myProject, IFolder myFolder, IFile myFile) {
        IJavaProject myJavaProject= JavaCore.create(myProject);
        if (myJavaProject == null)
            // the project is not configured for Java (has no Java nature)
            return;

        // get a package fragment or package fragment root
        IJavaElement myPackageFragment= JavaCore.create(myFolder);

        // get a .java (compilation unit), .class (class file), or
        // .jar (package fragment root)
        IJavaElement myJavaFile = JavaCore.create(myFile);
    }

Once you have a Java element, you can use the JDT API to traverse and query the model.  You may also
query the non−Java resources contained in a Java element. 

         private void createJavaElementsFrom(IProject myProject, IFolder myFolder, IFile myFile) {

Java Development Tooling overview

 Java elements and their resources 138



        ...
        // get the non Java resources contained in my project.
        Object[] nonJavaChildren = myJavaProject.getNonJavaResources();
        ...

Java projects

When you create a Java project from a simple project, JavaCore will check to see if the project is configured
with the Java nature.  The JDT plug−in uses a project nature to designate a project as having Java behavior. 
This nature (org.eclipse.jdt.core.JavaCore#NATURE_ID ) is assigned to a project when the "New Java
project" wizard creates a project.  If the Java nature is not configured on a project, JavaCore will return null
when asked to create the project.

JavaCore is also used to maintain the Java class path, including locations for finding source code and
libraries, and locations for generating output binary (.class) files.

What are the unique characteristics of Java projects? They record their classpath in a ".classpath" file and add
the Java incremental project builder to the project's build spec.  Otherwise, they are just regular projects and
can be configured with other natures (and other incremental builders) by plug−ins. Plug−ins that want to
configure projects with Java behavior in addition to their own behavior typically use the
NewJavaProjectWizardPage to assign the Java nature to the project in addition to their own custom natures
or behavior.

IJavaModel can be considered the parent of all projects in the workspace that have the Java project nature
(and therefore can be treated as an IJavaProject).

Opening a Java editor

The following snippet shows how JavaUI can be used to open a Java editor and display a specific member of
a Java compilation unit.

    void showMethod(IMember member) {
        ICompilationUnit cu = member.getCompilationUnit();
        IEditorPart javaEditor = JavaUI.openInEditor(cu);
        JavaUI.revealInEditor(javaEditor, member);
    }

The methods openInEditor and revealInEditor also work for class files and for members contained
in class files.

Creating Java specific prompter dialogs

The following snippet uses the JavaUI class to open the Open Type dialog:

    public IType selectType() throws JavaModelException {
        SelectionDialog dialog= JavaUI.createTypeDialog(
            parent, new ProgressMonitorDialog(parent),
            SearchEngine.createWorkspaceScope(),

Java Development Tooling overview

 Java projects 139



            IJavaElementSearchConstants.CONSIDER_TYPES, false);
        dialog.setTitle("My Dialog Title");
        dialog.setMessage("My Dialog Message");
        if (dialog.open() == IDialogConstants.CANCEL_ID)
            return null;

        Object[] types= dialog.getResult();
        if (types == null || types.length == 0)
            return null;
        return (IType)types[0];
    }

JavaUI provides additional methods for creating Open Package and Open Main Type dialogs.

Presenting Java elements in a JFace viewer

The JDT UI API provides classes that allow you to present the Java model or parts of it in a standard JFace
viewer. This functionality is provided primarily by:

StandardJavaElementContentProvider − translates the Java element hierarchy into a data structure
accessible by a tree, table or list viewer

• 

JavaElementLabelProvider − provides corresponding images and labels for a standard JFace viewer• 

Content and label providers for JFace viewers are described in detail in JFace viewers.

If you understand the basic platform mechanism, then putting the Java content and label providers together is
quite simple:

    ...
    TreeViewer viewer= new TreeViewer(parent);
    // Provide members of a compilation unit or class file, but no working copy elements
    ITreeContentProvider contentProvider= new StandardJavaElementContentProvider(true, false);
    viewer.setContentProvider(contentProvider);
    // There are more flags defined in class JavaElementLabelProvider
    ILabelProvider labelProvider= new JavaElementLabelProvider(
        JavaElementLabelProvider.SHOW_DEFAULT |
        JavaElementLabelProvider.SHOW_QUALIFIED |
        JavaElementLabelProvider.SHOW_ROOT);
    viewer.setLabelProvider(labelProvider);
    // Using the Java model as the viewers input present Java projects on the first level.
    viewer.setInput(JavaCore.create(ResourcesPlugin.getWorkspace().getRoot()));
    ...

The example above uses aJava model (IJavaModel) as the input element for the viewer.  The
StandardJavaElementContentProvider also supports IJavaProject, IPackageFragmentRoot,
IPackageFragment, and IFolder as input elements:

Overlaying images with Java information

JavaElementImageDescriptor can be used to create an image based on an arbitrary base image descriptor
and a set of flags specifying which Java specific adornments (e.g. static, final, synchronized, ....) are to be
superimposed on the image.

Java Development Tooling overview

Presenting Java elements in a JFace viewer 140



Adding problem and override decorators

When a viewer is supposed to include problem annotations, the JFace DecoratingLabelProvider together
with the ProblemsLabelDecorator is used. The snippet below illustrates the use of a problem label decorator.

    ...
    DecoratingLabelProvider decorator= new DecoratingLabelProvider(labelProvider, new ProblemsLabelDecorator());
    viewer.setLabelProvider(decorator);
    ...

In the same way the OverrideIndicatorLabelDecorator can be used to decorate a normal label provider to
show the implement and override indicators for methods.

Updating the presentation on model changes

Neither the OverrideIndicatorLabelDecorator nor the ProblemsLabelDecorator listen to model changes.
Hence, the viewer doesn't update its presentation if the Java or resource marker model changes. The reason for
pushing the update onto the client for these classes is that there isn't yet a generic implementation that fulfills
all performance concerns. Handling Java model delta inspection and viewer refreshing in each label decorator
or provider would lead to multiple delta inspections and unnecessary viewer updates.

So what does the client need to do in order to update their viewers ?

OverrideIndicatorLabelDecorator: the client must listen to Java model changes (see Responding to
changes in Java elements) and decide if the change(s) described by the delta invalidates the override
indicator of elements presented in the viewer. If so, the class inspecting the delta should trigger a
repaint of the corresponding Java elements using the standard JFace viewer API (see update methods
on StructuredViewer).

• 

ProblemsLabelDecorator: the client should listen to changes notified by the decorator via a
ProblemsLabelChangedEvent (see also ProblemsLabelDecorator.addListener ). Since the marker
model is resource based, the listener has to map the resource notifications to its underlying data
model. For an example showing how to do this for viewers presenting Java elements see the internal
classes ProblemTreeViewer.handleLabelProviderChanged.

• 

For the same reasons enumerated for label decorators the StandardJavaElementContentProvider doesn't
listen to model changes. If the viewer needs to update its presentation according to Java model changes, then
the client should add a corresponding listener to JavaCore. If the change described by the delta invalidates the
structure of the elements presented in the viewer then the client should update the viewer using the standard
JFace API (see refresh methods on StructuredViewer, and the add and remove methods on TableViewer and
AbstractTreeViewer).

Sorting the viewer

JavaElementSorter can be plugged into a JFace viewer to sort Java elements according to the Java UI sorting
style.

Java Development Tooling overview

Adding problem and override decorators 141



Writing Jar files

The org.eclipse.ui.jarpackager package provides utility classes to programmatically export files to a Jar file.
Below is a code snippet that outlines the use of the JarPackageData class:

    void createJar(IType mainType, IFile[] filestoExport) {
        Shell parentShell= ...;
        JarPackageData description= new JarPackageData();
        IPath location= new Path("C:/tmp/myjar.jar");
        description.setJarLocation(location);
        description.setSaveManifest(true);
        description.setManifestMainClass(mainType);
        description.setElements(filestoExport);
        IJarExportRunnable runnable= description.createJarExportRunnable(parentShell);
        try {
            new ProgressMonitorDialog(parentShell).run(true,true, runnable);
        } catch (InvocationTargetException e) {
            // An error has occurred while executing the operation
        } catch (InterruptedException e) {
            // operation has been canceled.
        }
    }

Additional API is provided to create a plug−in specific subclass of JarPackageData. This allows other
plug−ins to implement their own Jar export/import wizards and to save the content of the JarPackageData
object to a corresponding Jar description file.

Once the JAR is described by a JarPackageData, it can be programmatically written using a JarWriter.

Java wizard pages

The org.eclipse.jdt.ui.wizards package provides wizard pages for creating and configuring Java elements. 
Several prefabricated pages are provided for your use.

Configuring Java build settings

JavaCapabilityConfigurationPage supports editing the Java build settings (source folder setup, referenced
projects and, referenced and exported libraries).  

If you need to provide a wizard that configures a project for your plug−in while also configuring it with the
Java nature and other Java project capabilities, you should use this page (rather than subclassing
NewJavaProjectWizardPage).

Creating new Java elements

A hierarchy of wizard pages support the creation of new Java elements.  

NewElementWizardPage is the abstract class that defines the basic operation of the wizard.  Additional
abstract classes are provided in the hierarchy for making customizations to the functionality provided by the
concrete wizards.

Java Development Tooling overview

Writing Jar files 142



The concrete creation wizards can be used directly and generally are not intended to be subclassed. 

NewClassWizardPage allows users to define a new Java class.  To customize the behavior for this
wizard, you should subclass NewTypeWizardPage.

• 

NewInterfaceWizardPage allows users to define a new Java interface.  To customize the behavior
for this wizard, you should subclass NewTypeWizardPage.

• 

NewJavaProjectWizardPage allows users to create a new Java project.  To create a different kind of
project with Java capabilities, you should use JavaCapabilityConfigurationPage where possible
rather than subclassing this class.

• 

NewPackageWizardPage allows users to create a new Java package. To customize the behavior for
this wizard, you should subclass NewContainerWizardPage rather than this class. 

• 

Contributing a classpath container wizard page

The interface IClasspathContainerPage defines a structure for contributing a wizard page that allows a user
to define a new classpath container entry or edit an existing one.  If your plug−in has defined its own type of
classpath container using the JDT Core org.eclipse.jdt.core.classpathContainerInitializer extension point,
then you will probably want to define a corresponding wizard page for editing and creating classpath
containers of this type.

Your plug−in's markup should provide an extension org.eclipse.jdt.ui.classpathContainerPage.  In the
extension markup, you provide the name of your class that implements IClasspathContainerPage.  If you
want to provide additional information in your wizard page about a classpath's context when it is selected, you
can implement IClasspathContainerPageExtension to initialize any state that depends on the entries
selected in the current classpath.

Customizing a wizard page

Besides using prefabricated pages, you can subclass the wizard pages to add your own input fields or to
influence the code generation.  You should use the abstract classes in the NewElementWizardPage hierarchy
to customize a wizard rather than subclassing the concrete classes.

Below is a sample of a new type wizard page that is customized to create JUnit test case classes. The page
initializes the super class field with "junit.framework.TestCase" and adds a checkbox that controls whether
method stubs for the setUp() and tearDown() method are to be created.

public class TestCaseWizardPage extends NewTypeWizardPage {
    private Button fCreateStubs;

    public TestCaseWizardPage() {
        super(true, "TestCaseWizardPage");
    }

    /**
     * The wizard managing this wizard page must call this method
     * during initialization with a corresponding selection.
     */   
    public void init(IStructuredSelection selection) {
        IJavaElement jelem= getInitialJavaElement(selection);
        initContainerPage(jelem);
        initTypePage(jelem);
        doStatusUpdate();
    }

Java Development Tooling overview

Contributing a classpath container wizard page 143



    private void doStatusUpdate() {
        // define the components for which a status is desired
        IStatus[] status= new IStatus[] {
            fContainerStatus,
            isEnclosingTypeSelected() ? fEnclosingTypeStatus : fPackageStatus,
            fTypeNameStatus,
        };
        updateStatus(status);
    }

    protected void handleFieldChanged(String fieldName) {
        super.handleFieldChanged(fieldName);

        doStatusUpdate();
    }

    public void createControl(Composite parent) {
        initializeDialogUnits(parent);
        Composite composite= new Composite(parent, SWT.NONE);
        int nColumns= 4;
        GridLayout layout= new GridLayout();
        layout.numColumns= nColumns;
        composite.setLayout(layout);

        // Create the standard input fields
        createContainerControls(composite, nColumns);
        createPackageControls(composite, nColumns);
        createSeparator(composite, nColumns);
        createTypeNameControls(composite, nColumns);
        createSuperClassControls(composite, nColumns);

        // Create the checkbox controlling whether we want stubs
        fCreateStubs= new Button(composite, SWT.CHECK);
        fCreateStubs.setText("Add 'setUp()' and 'tearDown()' to new class");
        GridData gd= new GridData();
        gd.horizontalSpan= nColumns;
        fCreateStubs.setLayoutData(gd);

        setControl(composite);

        // Initialize the super type field and mark it as read−only
        setSuperClass("junit.framework.TestCase", false);
    }

    protected void createTypeMembers(IType newType, ImportsManager imports, IProgressMonitor monitor) throws CoreException {
        if (fCreateStubs.getSelection()) {
            String setUpMathod= "public void setUp() {}";
            newType.createMethod(setUpMathod, null, false, null);

            String tearDownMathod= "public void setUp() {}"
            newType.createMethod(tearDownMathod, null, false, null); 
        }
   }
}

Java Development Tooling overview

Contributing a classpath container wizard page 144


	Table of Contents
	JDT Plug-in Developer Guide
	 JDT Programmer's Guide
	 JDT Core 
	 Notices

	About This Content
	License
	Contributions

	JDT UI
	 JDT Debug

	Reference
	JDT Extension Points
	Classpath Variable Initializers
	Classpath Container Initializers
	Code Formatters
	VM Install Type UI Page
	JUnit Launch Configurations
	Test Run Listeners
	Java Runtime Classpath Providers
	Java Runtime Classpath Entries
	Java Runtime Classpath Entry Resolvers
	Java VM Connectors
	Java VM Install Types
	Classpath Container Entry Page
	Java Folding Structure Provider
	Javadoc Completion Processor
	Java Editor Text Hovers
	Java Element Filter Extensions
	Java Query Participants
	Quick Assist Processor
	Quick Fix Processor
	Create Participants
	Delete Participants
	Move Participants
	Rename Participants
	Refactoring Change Preview Viewers
	Refactoring Status Context Viewers
	 Other Reference Information
	 Java Development Tools Map of JDT Plug-ins
	Examples
	Installing the examples
	 Java Example Projects
	 Introduction
	 Loading the Samples
	 Notices


	 JDT Questions Index
	 JDT Core
	 JDT UI
	 Running a Java program
	 Launching a compiled Java program

	 Compiling Java code
	 Compiling code
	Using the ant javac adapter
	 Problem determination

	 Setting the Java build path
	 Changing the build path
	 Classpath entries
	 Exclusion patterns
	 Inclusion patterns

	 Classpath resolution
	 Manipulating Java code
	 Code modification using Java elements
	Code modification using the DOM/AST API
	 Responding to changes in Java elements

	 Using the Java search engine
	 Preparing for search
	 Searching
	 Collecting search results

	 JDT Core options
	Project specific options
	Major change in default JDT Core 3.0 options
	JDT Core options descriptions

	 Performing code assist on Java code
	 Code completion
	 Code selection

	 Java model
	 Java elements
	 Java elements and their resources
	 Java projects
	Opening a Java editor
	Creating Java specific prompter dialogs

	Presenting Java elements in a JFace viewer
	Overlaying images with Java information
	Adding problem and override decorators
	Updating the presentation on model changes
	Sorting the viewer

	Writing Jar files
	 Java wizard pages
	 Configuring Java build settings
	Creating new Java elements
	Contributing a classpath container wizard page
	 Customizing a wizard page



